

#### **Performance**

| Marks      | N.A. | 0  | 1/2 | 1  | 11/2 | 2 | 21/2 | 3  | Mean Score |
|------------|------|----|-----|----|------|---|------|----|------------|
| Percentage | 10   | 18 | 5   | 13 | 5    | 4 | 2    | 43 | 1.8        |



# **Performance Analysis**

- Only 45% of the students could give the correct solution of this question.
- Another 9% of the students got 1½ or 2 marks due to some minor mistakes.
- 18% of them got ½ or 1 mark as they made major errors.
- A good number of students (28%) could not attempt the question or gave irrelevent answer and so did not score any mark.

## **Common Errors Committed by students**

• A large number of students had written correctly as

$$a_{4} + a_{8} = 24$$
 and  $a_{6} + a_{10} = 44$ 

used the formulae for the terms also correctly but made computational errors while solving for 'a' and 'd'

- A good number of students made mistake in understanding the language of the question, the sum of 4th and 8th term is 24 was written as  $s_4 + s_8 = 24$  and then  $s_6 + s_{10} = 44$  so, used wrong formulae.
- A few got a = -13 and d = 5 correctly, but gave the terms as -13, -18, -23 or -13, 8, 3.
- A few students got a = -13 and d = 5 and left the question, half attempted.

#### **Suggestive Remedial Measures**

 Computational errors can only be minimised by giving sufficient practice of solving a system of linear equations.

- Sum of a few terms and the sum of first n terms are two different concepts and has to be clear by taking different examples.
- Finding a + d, a + 2d, ..... etc when a and d are given has to be given practice by taking different positive and negative values of 'a' and 'd'.
- 19. Solve for x and y:

$$(a - b) x + (a + b) y = a^2 - 2ab - b^2$$
  
 $(a + b) (x + y) = a^2 + b^2$ 

**Ans.** 
$$(a-b) x + (a+b) y = a^2 - 2ab - b^2$$

$$(a + b) x + (a + b) y = a^2 + b^2$$

Subtracting to get 
$$-2bx = -2ab - 2b^2 \Rightarrow x = (a+b)$$
 2 m

Substituting to get 
$$y = -\frac{2ab}{a+b}$$
 1 m

#### **Performance**

| Marks      | N.A. | 0  | 1/2 | 1  | 11/2 | 2 | 21/2 | 3  | Mean Score |
|------------|------|----|-----|----|------|---|------|----|------------|
| Percentage | 33   | 14 | 10  | 10 | 5    | 5 | _    | 23 | 1.4        |



## **Performance Analysis**

- Only 16% of the total students who attempted this question opted for this part and out of them only 23% could score full marks.
- 10% of those attempted, committed minor error white 20% committed major type of errors.
- 14% of these attempted gave irrelevent answer and so got no score.



# **Common Errors Committed by students**

Only a small number of students opted for this part and a majority of these who opted for this
option made errors of the type:

$$(a-b) x + (a+b)y = a^2 - 2ab - b^2 \Rightarrow ax - bx + ay + by = a^2 - 2ab - b^2$$

$$(a + b) (x + y) = a^2 + b^2$$
  $\implies$   $ax + bx + ay + by = a^2 + b^2$ 

and could not reach at the answer.

# **Suggestive Remedial Measures**

• Linear equations with cofficients as a, b etc are generally considered difficult by the students so, sufficent practice by elimination method and cross-multiplication method, has be given.

OR

Solve for x and y:

$$37x + 43y = 123$$

$$43x + 37y = 117$$

Adding the given two equations to get 80x + 80y = 240

1 m

or 
$$x + y = 3$$

Subtracting to get 
$$-6x + 6y = 6$$
 or  $-x + y = 1$  ...(ii)

1 m

Solving (i) and (ii) to get 
$$x = 1$$
,  $y = 2$ .

1 m

#### **Performance**

| Marks      | N.A. | 0  | 1/2 | 1  | 11/2 | 2 | 21/2 | 3  | Mean Score |
|------------|------|----|-----|----|------|---|------|----|------------|
| Percentage | 8    | 26 | 3   | 17 | _    | _ | 1    | 45 | 1.7        |

...(*i*)





### **Performance Analysis**

- Most of the students opted for this part but 34% of them could not score any mark.
- 20% of those who attempted this part committed major errors and so could not score more than 1 mark.
- 46% of those who attempted this part scored almost full marks.

# **Common Errors Committed by students**

A large number of students tried to solve this part, but the errors committed were as follows:

- Most of the students multiptied first equation by 43 and second equation by 37 and committed computational errors.
- Some tried the cross multiplication method and the again made errors in multiplying numbers like 123 with 43 and 117 with 37 etc.
- Some of those who gave correct answer by elimination method, wasted lot of their time, as comparred to special method.

#### **Remedial Measures**

- Questions requiring special techniques, has to be given sufficient practice to use these techniques as general methods if used in these questions will take a lot of time.
- 20. Prove that:

$$(\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 = 7 + \tan^2 \theta + \cot^2 \theta$$

Ans. LHS = 
$$\sin^2\theta + \csc^2\theta + 2 + \cos^2\theta + \sec^2\theta + 2$$
 1 m  
=  $4 + (\sin^2\theta + \cos^2\theta) + (1 + \cot^2\theta) + (1 + \tan^2\theta)$  1 m  
=  $4 + 1 + 2 + \cot^2\theta + \tan^2\theta$  1 m  
or =  $7 + \tan^2\theta + \cot^2\theta$ 

#### **Performance**

| Marks      | N.A. | 0 | 1/2 | 1 | 11/2 | 2 | 21/2 | 3  | Mean Score |
|------------|------|---|-----|---|------|---|------|----|------------|
| Percentage | 23   | 7 | _   | 2 | 3    | 1 | 2    | 62 | 2.6        |





# **Performance Analysis**

- Most of the students opted for this part but 30% of them could not score any mark due to irrelevent answer.
- 64% of those who attempted this part, completed correctly and scored almost full marks.
- Only 6% of those who attempted committed errors.

OR

Prove that:

$$\sin \theta (1 + \tan \theta) + \cos \theta (1 + \cot \theta) = \sec \theta + \csc \theta$$

Ans. LHS = 
$$\sin \theta (1 + \tan \theta) + \cos \theta \left(1 + \frac{1}{\tan \theta}\right)$$

$$= (1 + \tan \theta) \left(\sin \theta + \cos \theta \cdot \frac{1}{\tan \theta}\right)$$

$$= (1 + \tan \theta) \left(\frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta}\right) = 1 \text{ m}$$

 $\frac{1}{2}$  m

#### **Performance**

 $= \csc \theta + \sec \theta$ 

| Marks      | N.A. | 0  | 1/2 | 1  | 11/2 | 2 | 21/2 | 3 | Mean Score |
|------------|------|----|-----|----|------|---|------|---|------------|
| Percentage | 57   | 20 | _   | 14 | 3    | 3 | _    | 3 | 0.8        |





# **Performance Analysis**

- A small number of students opted for this option and out of them 77% could not score any mark because of irrelevent answer.
- 14% committed major errors and so could not score more than 1 mark.
- Only 6% could score upto 2 marks and another 3% could score full marks.

### **Common Errors Committed by students**

• Incorrect use of identity

$$\csc^2 \theta = 1 - \cot^2 \theta$$

or 
$$\sec^2 \theta = 1 - \tan^2 \theta$$

• Made mistakes to convert one trigonometric ratio to other

e.g. 
$$\sec \theta = \frac{1}{\sin \theta}$$
,  $\csc \theta = \frac{1}{\cos \theta}$ 

#### **Suggestive Remedial Measures**

- Sufficient practice is to be given for correct use of identities e.g.  $\sin^2 \theta = 1 - \cos^2 \theta$  but  $\sec^2 \theta \neq 1 - \tan^2 \theta$
- Converting one trigonometric ratio to other has also to be made clear by taking different examples.
- Converting all trigonometric ratios in the form of sin and cos is less error prone.
- 21. If the point P(x, y) is equidistant from the points A(3, 6) and B(-3, 4), prove that 3x + y 5 = 0.

**Ans.** PA = PB 
$$\Rightarrow$$
 PA<sup>2</sup> = PB<sup>2</sup>  $\Rightarrow$   $(x-3)^2 + (y-6)^2 = (x+3)^2 + (y-4)^2$  1½ m



$$\therefore x^2 - 6x + 9 + y^2 - 12y + 36 = x^2 + 6x + 9 + y^2 - 8y + 16$$
 1 m

or 
$$12x + 4y = 20 \Rightarrow 3x + y - 5 = 0$$
 ½ m

#### **Performance**

| Marks      | N.A. | 0  | 1/2 | 1 | 11/2 | 2 | 21/2 | 3  | Mean Score |
|------------|------|----|-----|---|------|---|------|----|------------|
| Percentage | 11   | 18 | 4   | 9 | 3    | 2 | 2    | 51 | 2.0        |



# **Performance Analysis**

- Only half of the students could solve the question correctly and got full marks while 5% of them got  $1\frac{1}{2}$  or 2 due to minor mistakes.
- 13% of the student could get ½ or 1 mark only due to major errors.
- A good number of students (29%) could not solve the question.

## **Common Errors Committed by students**

- A large number of students took P(x, y) as the mid point of AB, as it was written as equidistant from A and B.
  - Some of them substituted the coordinates of mid point in the given relation to show that those coordinates satisfy the given equation.
- A good number of students had written
  - $PA = PB \Rightarrow PA^2 = PB^2$  and used the distance formula correctly, but made computational errors.
- A few students only calculated distance AB.



# **Suggestive Remedial Measures**

- Plotting the points A, B on graph paper and then finding the equidistant points can make the concept clear to the students.
- Sufficient practice is required to minimise computational errors.
- 22. The point R divides the line segment AB, where A(-4, 0) and B(0, 6) are such that

 $AR = \frac{3}{4} AB$ . Find the coordinates of R.

Ans. 
$$\frac{\frac{3}{4} \text{ AB}}{A + \frac{1}{4} \text{ AB}}$$
 :  $\frac{1}{4} \text{ AB}$  Getting AR : RB = 3:1

Let coordinates of R be (x, y)

$$\therefore x = \frac{3(0) + 1(-4)}{3 + 1}, y = \frac{3(6) + 1(0)}{3 + 1}$$

$$\Rightarrow x = -1, y = \frac{9}{2} \text{ i.e., coordinates of R are } \left(-1, \frac{9}{2}\right)$$
1 m

#### **Performance**

| Marks      | N.A. | 0  | 1/2 | 1  | 11/2 | 2 | 21/2 | 3  | Mean Score |
|------------|------|----|-----|----|------|---|------|----|------------|
| Percentage | 14   | 30 | 7   | 10 | 3    | 6 | _    | 30 | 1.4        |



#### **Performance Analysis**

- A majority (44%) of students could not attempt the question.
- 17% of the students could get only ½ or 1 mark as they committed major mistakes.



• 9% of the students committed minor mistakes and so could get  $1\frac{1}{2}$  or 2 marks. white 30% of the students got full marks.

# **Common Errors Committed by students**

- A large number of students took AR =  $\frac{3}{4}$  AB
  - $\Rightarrow$  R divides AB in the ratio 3:4
- A few students took R (x, y) and used distance formula for AR and AB but left as a relation in

x and y. 
$$\leftarrow \frac{3}{4} \text{th} \rightarrow \leftarrow \frac{1}{4} \text{th} \rightarrow \rightarrow R \rightarrow B$$

# **Suggestive Remedial Measures**

- Concept of ratio should be brought by drawing the line segment AB and dividing it in 4 equal parts (approximately) and then locating the position of R.
- If given ratio is  $\frac{AR}{RB} = \frac{3}{4}$



then R divides AB in the ratio 3:4.

23. In Figure 5, ABC is a right-angled triangle right-angled at A. Semicircles are drawn on AB, AC and BC as diameters. Find the area of the shaded region.



Ans. Getting BC = 
$$\sqrt{3^2 + 4^2}$$
 = 5

1/2 m

Required area = 
$$\frac{1}{2} \pi \left( \frac{3}{2} \right)^2 + \frac{1}{2} \pi \left( 2 \right)^2 - \frac{1}{2} \pi \left( \frac{5}{2} \right)^2 + \frac{1}{2} .3.4$$
  $\left[ 4 \times \frac{1}{2} \right] = 2 \text{ m}$  = 6 sq.units



# **Outside Delhi Region**

#### **Performance**

| Marks      | N.A. | 0  | 1/2 | 1  | 11/2 | 2  | 21/2 | 3  | Mean Score |
|------------|------|----|-----|----|------|----|------|----|------------|
| Percentage | 13   | 12 | 7   | 13 | 12   | 12 | 3    | 28 | 1.5        |



# **Common Errors Committed by students**

• Students visualised the given figure as

Area of shaded region = Area of semicircle of diameter 3cm

+ Area of semicircle of diameter 4cm

-Area of semicircle of diameter 5cm

(not added the area of  $\triangle$  ABC)

• A few students calculated the area of  $\triangle$  ABC by taking BC = 5cm as base and 3cm as height.

$$\therefore \text{ area } \Delta ABC = \frac{1}{2} \times 5 \times 3 = \frac{15}{2} \text{ cm.}$$

• Some students did not write correct units.

## **Suggestive Remedial Measures**

- Sufficient practice to find the shaded area in a given figure, should be given by taking various types of figures and by shading different areas.
- Units of length, area and volume, should be made clear to the students. Sufficient examples should be given and habit of writing the units should be developed.



24. Draw a  $\triangle$  ABC with side BC = 6 cm, AB = 5 cm and  $\angle$  ABC =  $60^{\circ}$ . Construct a  $\triangle$  AB'C' similar to  $\triangle$  ABC such that sides of  $\triangle$  AB'C' are  $\frac{3}{4}$  of the corresponding sides of  $\triangle$  ABC.

# Ans. Constructing $\triangle$ ABC correctly

1 m

Constructing  $\triangle$  AB'C' similar to  $\triangle$ ABC, as per given conditions

 $2 \, \mathrm{m}$ 

#### **Performance**

| Marks      | N.A. | 0  | 1/2 | 1 | 11/2 | 2  | 21/2 | 3  | Mean Score |
|------------|------|----|-----|---|------|----|------|----|------------|
| Percentage | 8    | 10 | 2   | 9 | 18   | 19 | 3    | 31 | 1.9        |



## **Performance Analysis**

- Only 34% of the students could get 2½ or 3 marks.
- 37% of the students could get  $1\frac{1}{2}$  or 2m due to minor errors.
- 11% of the students committed major errors while 18% could not even attempt the question

#### **Common Errors Committed by students**

- Given scale factor was  $\frac{3}{4}$  but many students took it as  $\frac{4}{3}$  and constructed  $\Delta$  AB'C' bigger than  $\Delta$  ABC.
- Many students could not draw paralled lines correctly using compass, while constructing the similar triangle.
- Majority of students did not understand the similarity of  $\triangle$  ABC to  $\triangle$  BAC

# **Suggestive Remedial Measures**



- Difference between external division and internal division (i.e. scale factor  $\frac{4}{3}$  or  $\frac{3}{4}$ ) should be made clear by taking different examples.
- Practice has to be given for constructing

$$\Delta AB'C' \sim \Delta ABC$$
 (i.e. common point A)

or 
$$\Delta A'BC' \sim \Delta ABC$$
 (i.e. common point B)

and 
$$\Delta A'B'C \sim \Delta ABC$$
 (i.e. common point C)

25. D and E are points on the sides CA and CB respectively of  $\triangle$  ABC right-angled at C. Prove that  $AE^2 + BD^2 = AB^2 + DE^2$ .

Ans.



In 
$$\triangle ACE$$
,  $AE^2 = AC^2 + CE^2$ 

In 
$$\triangle BCD$$
,  $BD^2 = BC^2 + CD^2$ 

Adding to get 
$$AE^2 + BD^2 = (AC^2 + BC^2) + (CE^2 + CD^2)$$
 1 m

$$=AB^2 + ED^2$$
 ½ m

#### **Performance**

| Mark  | S      | N.A. | 0  | 1/2 | 1 | 11/2 | 2 | 21/2 | 3  | Mean Score |
|-------|--------|------|----|-----|---|------|---|------|----|------------|
| Perce | entage | 34   | 15 | _   | 3 | 1    | 7 | 4    | 36 | 2.0        |





# **Performance Analysis**

- Most of the students opted for this part but 49% of them could not score any mark.
- Only 40% could get almost full marks while 11% of them could get less than 2 marks due to errors.

# **Common Errors Committed by students**

- Incorrect application of Pythagoras theorem & its converse.
- Could not identitfy the right triangles with AE, BD, DE and AB as hypotenuse & then using Pythagoras theorem and its converse.

#### **Suggestive Remedial Measures**

- Sufficient number of simple geometrical exercises should be given to gain confidence.
- Practice of using Pythagoras theorem and its converse should be given by taking different examples.

**OR** 

In Figure 6, DB  $\perp$  BC, DE  $\perp$  AB and AC  $\perp$  BC. Prove that  $\frac{BE}{DE} = \frac{AC}{BC}$ 





**Ans.** In  $\triangle$ s BDE and  $\triangle$ ABC,  $\angle$ BED =  $\angle$ ACB = 90° and

$$\angle DBE = \angle BAC \text{ (alt. } \angle s)$$

∴ 
$$\triangle$$
BDE ~  $\triangle$ ABC (AA Similairty) 1½ m

$$\therefore \frac{BD}{AB} = \frac{DE}{BC} = \frac{BE}{AC}$$
 ½ m

or 
$$\frac{DE}{BC} = \frac{BE}{AC} \Rightarrow \frac{AC}{BC} = \frac{BE}{DE}$$
 1 m

#### **Performance**

| Marks   | N.A.    | О  | 1/2 | 1 | 11/2 | 2 | 21/2 | 3  | Mean Score |
|---------|---------|----|-----|---|------|---|------|----|------------|
| Percent | tage 48 | 13 | _   | 8 | 6    | 4 | 2    | 19 | 1.7        |



## **Performance Analysis**

- Most of the students opted for this part. Out of those who opted for this option, 61% did not score any mark.
- Only 21% could score almost full marks while the other 18% gave partially correct answer.

#### **Common Errors Committed by students**

- Unable to identify two similar triangles and to use the result of similarity.
- Students could not understand and write that

$$\angle$$
 DBA =  $\angle$  BAC (alternate angles)

$$\angle DEB = \angle ACB = 90^{\circ}$$

• Writing similarity of two triangles  $\triangle DBE \sim \triangle BAC$  in other incorrect representations which leads to incorrect ratio of sides.