SAMPLE QUESTION PAPER

Class X Session 2023-24

MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours MAX.MARKS: 80

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

	SEC	TION A			
	Section A consists of 20 questions of 1 mark each.				
1.	If two positive integers a and b are written as $a = x^3y^2$ and $b = xy^3$, where x, y are prime numbers, then the result obtained by dividing the product of the positive integers by the LCM (a, b) is				
	(a) xy (b) xy^2	(c) x^3y^3	(d) x^2y^2		
2.				1	
	The given linear polynomial y = f(x) has (a) 2 zeros (b) 1 zero and the zero is '3' (c) 1 zero and the zero is '4' (d) No zero	_4 _3 _2	5 (0, 4) 3 2 1 (3, 0) -1 0 1 2 3 4 5		

(b)
$$\frac{a1}{a2} = \frac{b1}{b2} \neq \frac{c1}{c2}$$

(c)
$$\frac{a1}{a2} \neq \frac{b1}{b2} = \frac{c1}{c2}$$

(d)
$$\frac{a1}{a2} \neq \frac{b1}{b2} \neq \frac{c1}{c2}$$

- 4. The nature of roots of the quadratic equation $9x^2 6x 2 = 0$ is:
 - (a) No real roots

(b) 2 equal real roots

(c) 2 distinct real roots

- (d) More than 2 real roots
- 5. Two APs have the same common difference. The first term of one of these is –1 and that of the other is 8. The difference between their 4th terms is
 - (a) 1
- (b) -7
- (c) 7
- (d) 9
- 6. What is the ratio in which the line segment joining (2,-3) and (5, 6) is divided by x-axis?
 - (a) 1:2
- (b) 2:1
- (c) 2:5
- (d) 5:2
- 7. A point (x,y) is at a distance of 5 units from the origin. How many such points lie in the third quadrant?
 - (a) 0
- (b) 1
- (c) 2
- (d) infinitely many

1

1

1

8. In \triangle ABC, DE || AB. If AB = a, DE = x, BE = b and EC = c.

Then x expressed in terms of a, b and c is:

(b)
$$\frac{ac}{b+c}$$

(c) $\frac{ab}{c}$

9. If O is centre of a circle and Chord PQ makes an angle 50° with the tangent PR at the point of contact

P, then the angle subtended by the chord at the centre is

- (a) 130°
- (b) 100°
- (c) 50°
- (d) 30°

10.	A quadrilater	al PQRS is dr	awn to circui	nscribe a circ	cle.	<u>P_</u>	12 Q	1
	If PQ = 12 cm	, QR = 15 cm	and RS = 14	cm, then find	the length of	SP is	15	
	(a) 15 cm		(b) 14 cm					
	(b) (c) 12	cm	(d) 11 cm			S	14 R	
11.	Given that sin	$\theta = \frac{a}{b}$, then co	os θ is.					1
	(a) $\frac{b}{\sqrt{b^2-a}}$	$\overline{\overline{a^2}}$	(b) $\frac{b}{a}$		(c) $\frac{\sqrt{b^2 - a^2}}{b}$	(dː	$\frac{a}{\sqrt{b^2 - a^2}}$	
12.	(sec A + tan A)	(1 – sin A) eq	uals:					1
	(a) sec A		(b) sin A		(c) cosec A	(0	l) cos A	
13.	If a pole 6 m l	high casts a s	hadow 2 √3n	n long on the	ground, then	the Sun's ele	evation is	1
	(a) 60°		(b) 45°		(c) 30°	(0	d) 90°	
14.	If the perime	ter and the a	rea of a circle	are numerio	cally equal, th	en the radiu	s of the circle	1
	is							
	(a) 2 units	S	(b) π units	((c) 4 units	(d	l) 7 units	
15.	It is proposed	d to build a n	ew circular p	ark equal in a	area to the su	ım of areas o	f two circular	
	parks of diam	neters 16 m a	nd 12 m in a	locality. The	radius of the	new park is		
	(a) 10m	(b) 15m	(c) 20m	(d) 24m	
16.	There is a sq	uare board c	of side '2a' ur	nits circumsc	ribing a red	circle. Jayade	ev is asked to	1
	keep a dot or	n the above s	aid board. T	he probabili	ty that he ke	eps the dot o	n the shaded	
	region is.							
	(a) $\frac{\pi}{4}$	(b)	$\frac{4-\pi}{}$	(c) ¹	τ -4	(d) $\frac{4}{\pi}$		
	^(a) 4	(0)	4	(0)	4	π		
17.	2 cards of hea	rts and 4 card	ls of spades a	re missing fro	m a pack of 5	2 cards. A ca	rd is drawn at	1
	random from t	the remaining	pack. What is	the probability	of getting a b	lack card?		
	(a) $\frac{22}{52}$		(b) $\frac{22}{46}$	((c) $\frac{24}{52}$	(d)	24	
							46	
18.	The upper lin	nit of the mod	dal class of th	e given distri	bution is:			1
	Height [in cm]	Below 140	Below 145	Below 150	Below 155	Below 160	Below 165	
	Number of girls	4	11	29	40	46	51	

	() 465	(1) 460	() 455	(D. 450					
	(a) 165	(b) 160		(d) 150					
19.		_		assertion (A) is followed by	1				
	a statement of Rea	ason (R). Choose the corr	ect option						
	Statement A (Assertion): Total Surface area of the top is the sum of the								
	curved surface area of the hemisphere and the curved surface area of the								
	cone.			\ /					
		son): Top is obtained by	joining the plane su	arfaces of the					
	hemisphere and c	_		•					
			e true and reason (R	(1) is the correct explanation					
	of assertior	ı (A)							
) are true and reas	son (R) is not the correct					
	•	of assertion (A)							
		a) is true but reason (R) is							
	(d) Assertion (A	A) is false but reason (R) i	s true.						
20.	Statement A (Asse	ertion): -5, $\frac{-5}{2}$, 0, $\frac{5}{2}$,	is in Arithmetic Prog	gression.	1				
	Statement R (Reas	son) : The terms of an Ar	ithmetic Progression	n cannot have both positive					
	and negative ratio	nal numbers.							
	(a) Both asserti	on (A) and reason (R) ar	e true and reason (R	(a) is the correct explanation					
	of assertior	ı (A)							
	(b) Both asser	tion (A) and reason (R) are true and reas	son (R) is not the correct					
	explanation	of assertion (A)							
	(c) Assertion (A	a) is true but reason (R) is	s false.						
	(d) Assertion (A	A) is false but reason (R) i	s true.						
		SEC	CTION B						
		Section B consists of 5	questions of 2 mar	ks each.					
21.	Prove that $\sqrt{2}$ is a	n irrational number.			2				

22.	ABCD is a parallelogram. Point P divides AB in the	2
	ratio 2:3 and point Q divides DC in the ratio 4:1.	
	Prove that OC is half of OA. A B	
23.	From an external point P, two tangents, PA	2
	and PB are drawn to a circle with centre 0.	
	At a point E on the circle, a tangent is drawn	
	to intersect PA and PB at C and D,	
	respectively. If PA = 10 cm, find the	
	perimeter of Δ PCD.	
	B/D	
24.	If tan (A + B) = $\sqrt{3}$ and tan (A - B) = $\frac{1}{\sqrt{3}}$; 0° < A + B < 90°; A > B, find A and B.	2
	[or]	
	Find the value of x if	
	$2\csc^2 30 + x\sin^2 60 - \frac{3}{4}\tan^2 30 = 10$	
25.	With vertices A, B and C of ΔABC as centres, arcs are drawn with radii 14 cm and the three	2
	portions of the triangle so obtained are removed. Find the total area removed from the	
	triangle.	
	[or]	
	14 cm	
	Find the area of the unshaded region shown in the given figure. 3 cm 3 cm 14 cm	
	SECTION C	
	Section C consists of 6 questions of 3 marks each	
26	National Autopayantian and magistrations from at alarts for all the state of the	2
26.	National Art convention got registrations from students from all parts of the country, of	3
	which 60 are interested in music, 84 are interested in dance and 108 students are interested	

	in handicrafts. For opti	mum cultural exchan	ge, organisers wish to	keep them in minimum	
	number of groups such	that each group consi	sts of students intere	sted in the same artform	
	and the number of stude	ents in each group is t	he same. Find the nu	mber of students in each	
	group. Find the number	r of groups in each ar	t form. How many ro	oms are required if each	
	group will be allotted a	room?			
27.	If α , β are zeroes of quadrates	dratic polynomial $5x^2$	+ $5x + 1$, find the value	ie of	3
	1. $\alpha^2 + \beta^2$				
	2. $\alpha^{-1} + \beta^{-1}$				
28.	The sum of a two digit n	umber and the numb	er obtained by revers	ing the digits is 66. If the	3
	digits of the number diff	fer by 2, find the num	ber. How many such i	numbers are there?	
		[c	or]		
	Solve: - $\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{x}}$	$\frac{3}{y} = 2$; $\frac{4}{\sqrt{x}} - \frac{9}{\sqrt{y}} = -$	1, x,y>0		
29.	PA and PB are tangents drawn to a circle of centre O from an external point P. Chord AB			3	
	makes an angle of 30° w	rith the radius at the p	ooint of contact.		
	If length of the chord is 6 cm, find the length of the tangent PA and the length of the radius				
	OA. OA. P				
	[or]				
	Two tangents TP and TQ	are drawn to a circle	with centre 0 from a	n external point T. Prove	
	that \angle PTQ = 2 \angle OPQ.				
30.	If $1 + \sin^2\theta = 3\sin\theta \cos\theta$, then prove that $\tan\theta = 1$ or $\frac{1}{2}$			3	
31.	The length of 40 leaves of a plant are measured correct to nearest millimetre, and the data			3	
	obtained is represented	in the following table	<u>.</u>		
		Length [in mm]	Number of leaves		
		118 - 126	3		
		127 – 135	5		
		136 – 144	9		
<u> </u>			l		<u> </u>

		145 - 153	12		
				-	
		154 – 162	5	_	
		163 – 171	4		
		172 - 180	2		
	Find the mean length of	the leaves.	'	-	
		SI	ECTION D		
	Secti	on D consists of	4 questions of 5 marks	each	
32.	A motor boat whose spe	ed is 18 km/h in s	till water takes 1 hour mo	ore to go 24 km upstream	5
	than to return downstre	am to the same s	pot. Find the speed of str	eam.	
			[or]		
	Two water taps together	can fill a tank in	$9\frac{3}{8}$ hours. The tap of larg	er diameter takes 10	
	hours less than the smal	ler one to fill the	tank separately. Find the	time in which each tap	
	can separately fill the ta	nk.			
33.	(a) State and prove Basi	c Proportionality	theorem.	A N	5
	(b) In the given figure \angle Prove that $\frac{AB}{BD} = \frac{AE}{FD}$	CEF = ∠CFE. F is	the midpoint of DC.	D F C	
34.	Water is flowing at the	rate of 15 km/h t	hrough a pipe of diamet	er 14 cm into a cuboidal	5
	pond which is 50 m long	and 44 m wide. I	n what time will the leve	l of water in pond rise by	
	21 cm?				
	What should be the spee	d of water if the i	rise in water level is to be	e attained in 1 hour?	
			[or]		
	A tent is in the shape of	a cylinder surmo	unted by a conical top. If	the height and radius of	
	the cylindrical part are 3	m and 14 m resp	ectively, and the total he	ight of the tent is 13.5 m,	
	find the area of the can	vas required for	making the tent, keeping	g a provision of 26 m ² of	
	canvas for stitching and	wastage. Also, fin	d the cost of the canvas to	be purchased at the rate	
	of ₹ 500 per m ² .				

35.	The median of the following data is 50. Find the values of 'p' and 'q', if the sum of all frequencies is	5
	90. Also find the mode of the data.	

Marks obtained	Number of students
20 - 30	р
30 - 40	15
40 – 50	25
50 – 60	20
60 – 70	q
70 – 80	8
80 - 90	10

SECTION E

36. Manpreet Kaur is the national record holder for women in the shot-put discipline. Her throw of

18.86m at the Asian Grand Prix in 2017 is the maximum distance for an Indian female athlete.

Keeping her as a role model, Sanjitha is determined to earn gold in Olympics one day.

Initially her throw reached 7.56m only. Being an athlete in school, she regularly practiced both in the mornings and in the evenings and was able to improve the distance by 9cm every week.

During the special camp for 15 days, she started with 40 throws and every day kept increasing the number of throws by 12 to achieve this remarkable progress.

(1)	How many throws Sanjitha practiced on 11 th day of the camp?	1
(ii)	What would be Sanjitha's throw distance at the end of 6 weeks?	2

(or)
When will she be able to achieve a throw of 11.16 m?

(iii) How many throws did she do during the entire camp of 15 days?

37. Tharunya was thrilled to know that the football tournament is fixed with a monthly timeframe from 20th July to 20th August 2023 and for the first time in the FIFA Women's World Cup's history, two nations host in 10 venues. Her father felt that the game can be better understood if the position of players is represented as points on a coordinate plane.

1

