गणित — 041 अंक योजना **कक्षा - बारहवीं** (2025 - 26)

क्रम संख्या	उत्तर संकेत /मूल्य बिन्दु	अंक विभाजन
1	ग्राफ से स्पष्ट है कि प्रांत $[\frac{-1}{2},\frac{1}{2}]$ है तो आलेख फलन $\sin^{-1}(2x)$ का है उत्तर है (B) $\sin^{-1}(2x)$	1
1 (V.I.)	प्रांत $\left[\frac{-1}{3},\frac{1}{3}\right]$ है , अत : फलन $\cos^{-1}(3x)$ है । उत्तर है (C) $\cos^{-1}(3x)$	1
2	AB परिभाषित है इसलिए n=4 AC परिभाषित है इसलिए p=4 AB तथा AC एक ही कोटि के वर्ग आव्यूह हैं। इसलिए $m \times 3 = m \times q \Rightarrow q = 3 = m$ उत्तर (A) है $m = q = 3$ तथा $n = p = 4$	1
3	क्योंकि A <i>एक विषम सममित है</i> इसलिए $p=0,q=2,r=-3,t=4$ इसलिए $\frac{q+t}{p+r}=\frac{6}{-3}=-2$ उत्तर है (A) -2	1
4	$adjA = 27 \Rightarrow A ^3 = 27 = 3^3 \Rightarrow A = 3$ A(adjA) = A I = 3I उत्तर है (C) 3I	1
5	$\frac{3}{3}$ 0 0 $\frac{1}{3}$ 0 0 आव्यूह $\begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$ का व्युत्क्रम= $\begin{bmatrix} 0 & \frac{1}{2} & 0 \end{bmatrix}$ 0 0 5 0 0 $\frac{1}{5}$ अत : उत्तर (B) है.	1
6	$ \cos 67^{\circ} \sin 67^{\circ} = \cos 67^{\circ} \cos 23^{\circ} - \sin 67^{\circ} \sin 23^{\circ} = \cos (67^{\circ} + 23^{\circ}) = \cos 90^{\circ} = 0$ उत्तर है (A) 0	1
7	$f(x), x = \pi \mathrm{प} \overline{\mathrm{v}} \mathrm{t} \mathrm{d} \mathrm{d} $	1

	$f(x) = x \tan^{-1} x$	
8	$f'(x) = x \tan^{-1} x$ $f'(x) = 1 \cdot \tan^{-1} x + x \cdot \frac{1}{1+x^2}$ $f'(1) = 1 \cdot 1 \tan^{-1} + \frac{1}{1+1} = \frac{\pi}{4} + \frac{1}{2}$ उत्तर है (B) $\frac{\pi}{4} + \frac{1}{2}$	1
9	$f(x) = 10 - x - 2x^{2}$ $\Rightarrow f'(x) = -1 - 4x$ वर्धमान फलन के लिए $f'(x) \ge 0$ $\Rightarrow -(1 + 4x) \ge 0$ $\Rightarrow (1 + 4x) \le 0$ $\Rightarrow x \le -\frac{1}{4}$ $\Rightarrow x \in (-\infty, -\frac{1}{4}]$ उत्तर है (A) $(-\infty, -\frac{1}{4}]$	1
10	xdx + ydy = 0 $\Rightarrow \int xdx = -\int ydy$ $\Rightarrow \frac{x^2}{2} = \frac{-y^2}{2} + k$ $\Rightarrow x^2 + y^2 = 2k$ अतः हल है $\Rightarrow x^2 + y^2 = 2k$, k एक स्वेच्छ अचर है उत्तर है (C) ,वृत	1
11	$I = \int_{a}^{b} x f(x) dx = \int_{a}^{b} (a+b-x) f(a+b-x) dx \Rightarrow I = \int_{a}^{b} (a+b-x) f(x) dx $ (given $f(a+b-x) = f(x)$) $\Rightarrow I \int_{a}^{b} (a+b) f(x) dx - \int_{a}^{b} x f(x) dx$ $\Rightarrow 2 I = (a+b) \int_{a}^{b} f(x) dx$ $\Rightarrow I = \frac{1}{2} (a+b) \int_{a}^{b} f(x) dx$ उत्तर है (D) $\frac{a+b}{2} \int_{a}^{b} f(x) dx$	1
12	माना $I = \int x^3 \sin^4(x^4) \cos(x^4) \ dx$ माना $\sin(x^4) = t \Rightarrow 4x^3 \cos(x^4) \ dx = dt \Rightarrow x^3 \cos(x^4) = \frac{1}{4} \ dt$ तब $I = \int t^4 \left(\frac{1}{4} \ dt\right) = \frac{1}{20} \ t^5 + C = \frac{1}{20} \sin^5(x^4) + C$ $\Rightarrow I = \frac{1}{20} \sin^5(x^4) + C = a \sin^5(x^4) + C$ अत: $a = \frac{1}{20}$ उत्तर (B) $\frac{1}{20}$	1
13	सदिश आव्यूह $\hat{\imath}+2\hat{\jmath}+\hat{k}$ का रेखा $\vec{r}=(3\hat{\imath}-\hat{\jmath})+\lambda(\hat{\imath}+2\hat{\jmath}+3\hat{k})$ पर प्रक्षेप है $\frac{1x1+2x2+1x3}{\sqrt{1^2+2^2+3^2}}=\frac{8}{\sqrt{14}}$ इकाई उत्तर है (C) $\frac{8}{\sqrt{14}}$ इकाई	1

	बिंदु (a, b, c) की y-अक्ष से दूरी $\sqrt{a^2+c^2}$ है	
14	तो, दूरी = $\sqrt{3^2 + 5^2}$ = $\sqrt{34}$ इकाई है। उत्तर है (B) $\sqrt{34}$ इकाई	1
15	$(2\vec{a}.\hat{\imath})\hat{\imath} - (\vec{b}.\hat{\jmath})\hat{\jmath} + (\vec{c}.\hat{k})\hat{k} = (2 \times 3)\hat{\imath} - (1)\hat{\jmath} + (2)\hat{k}$ = $6\hat{\imath} - \hat{\jmath} + 2\hat{k} = \vec{c}$ उत्तर है (D) \vec{c}	1
16	बिंदु $(1,0)$ और $(0,2)$ समीकरण $2x+y=2$ को संतुष्ट करते हैं और छायांकित क्षेत्र से पता चलता है कि $(0,0)$ सुसंगत क्षेत्र में स्थित नहीं है तो, असमिका $2x+y\geq 2$ है उत्तर है (B) $2x+y\geq 2$	1
16 (V.I.)	$(4,0)$ और $(0,3)$ अधिकतम मान देते हैं इसलिए $Z_{(4,0)}=Z_{(0,3)}\Rightarrow 4a+c=3b+c\Rightarrow 4a=3b$ उत्तर है (A) $4a=3b$	1
17	छात्र ग्राफ पर बनी रेखा से बिंदु (2,9) को पढ़ सकता है। बिन्दु (5,0) और (0,15) को मिलाने पर छात्र समीकरण $3x + y = 15$ प्राप्त कर सकता है और फिर बिंदु (2,9) को सत्यापित कर सकता है जो इसे संतुष्ट करता है। उत्तर है (A) (2,9)	1
17-VI	उत्तर है (C) खुला अर्ध तल जिसमें मूल बिंदु शामिल है, लेकिन रेखा $3x + 5y = 10$ के बिंदु नहीं हैं	1
18	उत्तर है (B) $\frac{1}{100}$ व्यक्ति को शेष दो अंकों का अनुमान लगाना होगा। P (पिन का अनुमान लगाना) =1×1×1×1 $\frac{1}{10}$ × $\frac{1}{10}$ = $\frac{1}{100}$	1
19	$\sin^{-1}(\frac{\sqrt{3}}{2}) + \tan^{-1}1 - sec^{-1}(\sqrt{2}) = \frac{\pi}{3} + \frac{\pi}{4} - \frac{\pi}{4} = \frac{\pi}{3} \neq \frac{\pi}{4}$ अत :A असत्य है $\sin^{-1}x \text{ की मुख्य शाखा } is[\frac{-\pi}{2}, \frac{\pi}{2}] \text{ है तथा } sec^{-1}x\text{ की}[0, \pi] - \{\frac{\pi}{2}\}$ अतः , R सत्य है उत्तर (D) है , अभिकथन असत्य तथा तर्क सत्य	1
20	$\vec{r} \times (\vec{a} + \vec{b}) = \vec{0}$ => \vec{r} , $(\vec{a} + \vec{b})$ के समांतर है तथा $(\vec{a} + \vec{b})$, \vec{a} और \vec{b} के तल पर स्थित है, इसलिए \vec{r} , \vec{a} , \vec{b} तल के समांतर है \Rightarrow \vec{r} , $(\vec{a} \times \vec{b})$.के लंबवत है अतः अभिकथन सत्य है लेकिन $(\vec{a} + \vec{b})$, \vec{a} और \vec{b} के तल पर स्थित है, इसलिए $(\vec{a} + \vec{b})$, \vec{a} और \vec{b} के तल पर लंबवत नहीं है इसलिए, तर्क गलत है। उत्तर है (C) अभिकथन सत्य है, लेकिन तर्क गलत है	1

	खंड - ख , (VSA) प्रकार के प्रश्न हैं <i>,</i>	I
प्रत्येक के 2 अंक हैं		
21A	$\tan(\tan^{-1}(-1) + \frac{\pi}{3}) = \tan(\frac{-\pi}{4} + \frac{\pi}{3})$	1/2
	$=\frac{\tan\frac{\pi}{3}-\tan\frac{\pi}{4}}{1+\tan\frac{\pi}{3}\tan\frac{\pi}{4}}$	1
	$=\frac{\sqrt{3}-1}{1+\sqrt{3}} = 2 - \sqrt{3}$	1/2
	अथवा	अथवा
21B	प्रांत के लिए , $-1 \le 3x - 2 \le 1$	
	$\Rightarrow 1 \le 3x \le 3$ $\Rightarrow \frac{1}{2} \le x \le 1$	1/ ₂ 1/ ₂
	3-x-1 अतः $\cos^{-1}(3x-2)$ का प्रांत है $\left[\frac{1}{3},1\right]$	1/2
	3	1/2
22	$y = \log \tan(\frac{\pi}{4} + \frac{x}{2})$	
1 1 2	x के सापेक्ष अवकलन करने पर	
	$\frac{dy}{dx} = \frac{1}{\tan(\frac{\pi}{4} + \frac{x}{2})} .sec^{2}(\frac{\pi}{4} + \frac{x}{2}).\frac{1}{2}$	1/2
	$=\frac{\cos(\frac{\pi}{4}+\frac{x}{2})}{\sin(\frac{\pi}{4}+\frac{x}{2})} \cdot \frac{1}{\cos^2(\frac{\pi}{4}+\frac{x}{2})} \cdot \frac{1}{2}$	
	$= \frac{1}{2\sin(\frac{\pi}{4} + \frac{x}{2})\cos(\frac{\pi}{4} + \frac{x}{2})} = \frac{1}{\sin(\frac{\pi}{3} + x)} = \frac{1}{\cos x}$	1
	$= \Rightarrow \frac{dy}{dx} - \sec x = 0$	1/2
23A	$\int \frac{(x-3)e^x}{(x-1)^3} dx \int \frac{(x-1-2)e^x}{(x-1)^3} dx$	1
	$\int \left(\frac{1}{(x-1)^2} - \frac{2}{(x-1)^3}\right) e^x dx = \int \left(\frac{1}{(x-1)^2} + \frac{d}{dx}\left(\frac{1}{(x-1)^2}\right)\right) e^x dx$ $\frac{e^x}{(x-1)^2} + C \qquad (क्योंकि \int (f(x) + f'(x))e^x dx = e^x f(x) + C)$	1
	अथवा	अथवा
23B	$A = \int_0^4 x dy = \int_0^4 \sqrt{y} dy$	1
	$= \left[\frac{2}{3} \times y^{\frac{3}{2}}\right]_{y=0}^{y=4} = \frac{16}{3} \bar{a}_{1} \bar{a}_{2} \bar{b}_{3}$	1
23B	दृष्टिबाधितों के लिए :	
	$A = \int_0^3 y dx = \int_0^3 \sqrt{x} dx$	1
	$=[\frac{2}{3} \times x^{\frac{3}{2}}]_{x=0}^{x=3} = 2\sqrt{3}$ वर्ग इकाई	1
24	दिया है $f(x+y) = f(x)f(y)$ f(0+5) = f(0)f(5)	
	$\Rightarrow f(0) = 1$	1/2
	$f'(5) = \lim_{h \to 0} \frac{f(5+h) - f(5)}{h} = \lim_{h \to 0} \frac{f(5)f(h) - f(5)}{h} [\because f(x+y) = f(x)f(y)]$	
	$= \lim_{h \to 0} \frac{2f(h) - 2}{h} \qquad [\because f(5) = 2]$	1
	$=2\lim_{h\to 0}\frac{f(h)-1}{h}=2\lim_{h\to 0}\frac{f(h)-f(0)}{h}$ =2 f'(0)	
	= 2 (3) $[\because f'(0) = 3]$ =6	1/2

25	सदिश $\overrightarrow{OP} = \frac{1}{2}(4\hat{\imath} + 4\hat{k}) = 2\hat{\imath} + 2\hat{k}$	1/2
	्र दो आसन्न भुजाओं OA और OP द्वारा निर्मित समांतर चतुर्भुज का क्षेत्रफल	
		4,
	$= (\overrightarrow{OA}\times\overrightarrow{OP}) =\begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1\end{vmatrix}$	1/2
	$\begin{vmatrix} 2 & 0 & 2 \\ = 2\hat{\imath} - 2\hat{k} \end{vmatrix}$	1/2
	$=2\sqrt{2}$ वर्ग इकाई।	1/2
	खंड - ग लघु उत्तर (SA) प्रकार के प्रश्न,	
	प्रत्येक के 3 अंक	
26A	$x^y = e^{x-y}$	
	दोनों पक्षों का log लेने पर	
	$y \log x = (x - y) \log e$	
	$y\log x + y = x$ (क्योंकि $\log e = 1$)	
	$\Rightarrow y = \frac{x}{1 + \log x}$	1
	x के सापेक्ष अवकलन करने पर	
	$(11\log x) 1 - x^{-1}$	
	$\frac{dy}{dx} = \frac{(1 + \log x) \cdot 1 - x \cdot \frac{1}{x}}{(1 + \log x)^2}$	
	$=\frac{\log x}{(\log e + \log x)^2}$	1
	$=\frac{\log x}{(\log(xe))^2}$	1
	$ \frac{(\log(xe))^2}{dy} \qquad \log e \qquad 1 \qquad 1 \qquad 1 \qquad 4 $	1
	Now $\frac{dy}{dx}\Big _{x=e} = \frac{\log e}{(\log e^2)^2} = \frac{1}{(2\log e)^2} = \frac{1}{2^2} = \frac{1}{4}$ (: $\log e = 1$)	
	वैकल्पिक हल :	
	$x^{y} = e^{x-y}$	
	्रे दोनों पक्षों का log लेने पर	
	$y\log x = (x - y)\log e$	
	$y\log x + y = x$ (since $\log e = 1$)	
	x के सापेक्ष अवकलन करने पर	
	$\log x \frac{dy}{dx} + \frac{y}{x} + \frac{dy}{dx} = 1$	
	$\Rightarrow \frac{dy}{dx}(1 + \log x) = 1 - \frac{y}{x}$	
	$\Rightarrow \frac{dy}{dx} = \frac{x - y}{x(1 + \log x)} = \frac{x - \frac{x}{1 + \log x}}{x(1 + \log x)} = \frac{x(1 + \log x) - x}{x(1 + \log x)^2} = \frac{x(1 + \log x - 1)}{x(\log e + \log x)^2} = \frac{\log x}{(\log(xe))^2}$ $\Rightarrow \frac{dy}{dx}\Big _{x=e} = \frac{\log e}{(\log e^2)^2} = \frac{1}{(2\log e)^2} = \frac{1}{2^2} = \frac{1}{4} \qquad (\because \log e = 1)$	
	$\int dx dx dx = e^{-\frac{1}{2}(\log e^2)^2} = \frac{1}{(2\log e)^2} = \frac{1}{2^2} - \frac{1}{4} \qquad (1. \log e = 1)$	
	अथवा	
	$\frac{dx}{d\theta} = a(1 - \cos\theta), \frac{dy}{d\theta} = a(0 + \sin\theta),$	2797ਜ਼ਾ
26B	$\Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{dx}} = \frac{a\sin\theta}{a(1-\cos\theta)}$	अथवा
	$\frac{2\sin(\frac{\theta}{2})\cos(\frac{\theta}{2})}{2\sin^2(\frac{\theta}{2})} = \cot\frac{\theta}{2}$	1
		1
	$\Rightarrow \frac{d^2y}{dx^2} = -\frac{1}{2} \cos ec^2 \left(\frac{\theta}{2}\right) \frac{d\theta}{dx}$	1
	$=\frac{-1}{2a} cosec^2(\frac{\theta}{2}) \frac{1}{2\sin^2(\frac{\theta}{2})}$	
	$= -\frac{1}{4a} cosec^4(\frac{\theta}{2})$	
	4a	4
		1

27	मान लीजिए समय t पर बर्फ की गेंद की त्रिज्या r है	
	$V = \frac{4}{3}\pi r^3 \dots (1)$	1/2
	$S = 4\pi r^2 \dots (2)$	72
	दिया है $\frac{dV}{dt} \propto S$	
	$\Rightarrow rac{dV}{dt} = - k S (जहाँ k कोई धनात्मक स्थिरांक है) (3)$	1/2
	t के सापेक्ष (1) का अवकलन करने पर हमें प्राप्त होता है	
	$\frac{dV}{dt} = \frac{4}{3}\pi.(3 r^2) \frac{dr}{dt}$	
	$\frac{dt}{dt} = 4\pi r^2 \frac{dr}{dt} \dots (4)$	1
	\Rightarrow - k S = $4\pi r^2 \frac{dr}{dt}$ (3) and (4) द्वारा	1/2
	$\Rightarrow -kS = S \frac{dr}{dt} \qquad (0) \text{ and } (4) \text{ gr}(1)$ $\Rightarrow -kS = S \frac{dr}{dt} \qquad ((2) \text{ का इस्तेमाल करने पर })$, 2
	$\Rightarrow \frac{dr}{dt} = -\mathbf{k}$	1/
	<i>→ तॄत − - ^</i> ⇒बर्फ के गोले की त्रिज्या निश्चित दर से घट रही है	1/2
	उप में भारत या विश्वत पर रा पट रहा ह	
28A		
	x = -4	
	y = x + 1	
	y = -x - 1	1
	×	
	-5 -4 -3 -2 -1 0 1 2 3 4 5	
	f^2	1/
	$\int_{-4}^{2} x+1 dx = \int_{-4}^{-1} (-x-1) dx + \int_{-1}^{2} (x+1) dx$	1/2
	$= \frac{-(x+1)^2}{2} \Big]_{-4}^{-1} + \frac{(x+1)^2}{2} \Big]_{-1}^{2}$	1/2
	$= -(0 - \frac{9}{2}) + (\frac{9}{2} - 0) = 9$	1/2
	$= -(0-\frac{1}{2})+(\frac{1}{2}-0)=9$	1/2
	यह वक्र $y= x+1 $, x अक्ष तथा रेखाओं $x=-4$ तथा $x=2$ द्वारा छायांकित क्षेत्र से घिरा हुआ क्षेत्रफल	
	दर्शाता है	
28B	अथवा	
	Tv /	
	5	
	4	1
	3 -	
	21	
	-1 8 1 2 3 4 5	

	आवश्यक क्षेत्र = $\int_0^4 x dx - \int_0^4 \frac{x^2}{4} dx$	1
	$= \frac{x^2}{2} \Big _0^4 - \frac{1}{12}$	1/2
	= $\frac{1}{2}(16-0) - \frac{1}{12}(64-0) = 8 - \frac{16}{3} = \frac{8}{3}$ वर्ग इकाई	1/2
	दृष्टिबाधितों के लिए:	
	$y = x+1 = f(x) = \begin{cases} -x - 1, x < -1\\ x + 1, x \ge -1 \end{cases}$	1
	$\int_{-4}^{2} x+1 dx = \int_{-4}^{-1} (-x-1) dx + \int_{-1}^{2} (x+1) dx$	
	$= \frac{-(x+1)^2}{2} \Big]_{-4}^{-1} + \frac{(x+1)^2}{2} \Big]_{-1}^{2}$	1
	$= -(0 - \frac{9}{2}) + (\frac{9}{2} - 0) = 9$	1
	यह वक्र $y= x+1 $, x अक्ष तथा रेखाओं $x=-4$ तथा $x=2$ द्वारा छायांकित क्षेत्र से घिरा हुआ क्षेत्रफल दर्शाता है ।	1
	अथवा	
	$25x^{2} + 16y^{2} = 400 \Rightarrow \frac{x^{2}}{16} + \frac{y^{2}}{25} = 1 \Rightarrow \frac{x^{2}}{4^{2}} + \frac{y^{2}}{5^{2}} = 1 \Rightarrow y = \frac{5}{4}\sqrt{4^{2} - x^{2}}$	
	आवश्यक क्षेत्र = $4\int_0^4 \frac{5}{4} \sqrt{4^2 - x^2} dx$	1
	$= 5\left[\frac{x\sqrt{4^2-x^2}}{2} + \frac{4^2}{2}\sin^{-1}(\frac{x}{4})\right]_0^4$	1
	$= 5[0 + 8\sin^{-1}(1) - 0]$	1
	$=40 imesrac{\pi}{2}=20\pi$ वर्ग इकाई	1
29A	z – अक्ष के समांतर (2, −1,3)से गुजरने वाली रेखा $\vec{r} = (2\hat{\imath} - \hat{\jmath} + 3\hat{k}) + \lambda(\hat{k})$ द्वारा दी गई है इस रेखा पर कोई बिंदु $P(2, -1, 3 + \lambda)$ है	1
	दी गई रेखा $\vec{r}=(2\hat{\imath}-\hat{\jmath}+2\hat{k})+\mu(3\hat{\imath}+6\hat{\jmath}+2\hat{k})$ पर कोई बिंदु	1/2
	Q $(2+3\mu,-1+6\mu,2+2\mu)$ है	
	1	

		
	प्रतिच्छेदन बिंदु के लिए	1/2
	Q $(2+3\mu, -1+6\mu, 2+2\mu) = P(2, -1, 3+\lambda) \Rightarrow 2=2+3\mu \Rightarrow \mu=0$ है	/2
	प्रतिच्छेदन बिंदु है (2,-1,2)	1/2
	(2,-1,3) की $(2,-1,2)$ से दूरी स्पष्ट रूप से 1 इकाई है।	
	(2,-1,3) का (2,-1,2) स दूरा स्पष्ट रूप स 1 इकाइ हा	1/2
	वैकल्पिक हल :	
	बिन्दु $(2,-1,3)$ से z अक्ष के समांतर रेखा पर कोई बिन्दु $(2,-1,\lambda)$ है	1
	दी गई रेखा पर कोई बिन्दु $(2 + 3\mu, -1 + 6\mu, 2 + 2\mu)$ है	1
	इसलिए $2 = 2 + 3 \mu \Rightarrow \mu = 0$	
	प्रतिच्छेदन बिंदु है $(2,-1,2)$	1/2
	(2,-1,3) की $(2,-1,2)$ से दूरी स्पष्ट रूप से 1 इकाई है।	1/2
000	अथवा	
29B	$(2,-1,1)$ से होकर जाने वाली z -अक्ष के समांतर रेखा है $\vec{r}=\left(2\hat{\imath}-\hat{\jmath}+\hat{k}\right)+\lambda(\hat{k})$ इस	1
	रेखा पर कोई बिंदु $P(2, -1, 1+ \lambda)$ है	
	दी गई रेखा पर कोई बिंदु A (3+ μ , μ , 1+ μ) है	
	A $(3+ \mu, \mu, 1+ \mu) = P(2, -1, 1+ \lambda) \Rightarrow \mu = -1$	1
	प्रतिच्छेद बिंद (2, -1,0) है	1/2
	z-अक्ष से (2,-1,0) की दूरी है $\sqrt{2^2+(-1)^2}=\sqrt{5}$ इकाई	1/2
30	ग्राफ का रेखाचित्र बनाना	$1\frac{1}{2}$
		2
	1000 4	
	800	
	600	
	C = (800, 400)	
	D=(400, 200)	
	200	
	-200 0 200 400 608 800 1000 1200 1400 1600 1800	
	A = (600, 0) B = (1200, 0)	
	-200	
20	20 5	1/2
30	कोनीय बिंदु A (600,0), B (1200,0), C (800,400), D (400,200) हैं।	1/2
	Z के मान : $Z_A = 1200$, $Z_B = 2400$, $Z_C = 2000$, $Z_D = 1000$ अधिकतम $Z = 2400$ जब $x = 1200$ और $y = 0$	1/2
	$313464 \ Z = 240034 \ x = 1200315 \ y = 0$	
	दृष्टिबाधित लोगों के लिए:	
	कोनीय बिंदु A (600,0), B (1200,0), C (800,400), D (400,200) पर	1
	$_{ m Z}$ के मान हैं $Z_A=1800, Z_B=3600, Z_C=3200, Z_D=1600$	1
	B(1200,0) पर Z का अधिकतम मान = 3600	1
	और D(400,200) पर Z का न्यूनतम मान = 1600	1

31	ma alfan sa mi à	
	मान लीजिए घटनाएँ हैं:	
	A: मेहुल का चयन किया गया है	
	B: राशि का चयन किया गया है	
	तो प्रश्न के अनुसार,	
	А और В स्वतंत्र घटनाएँ हैं और	1
	$P(A) = 0.4, P(A \cap \bar{B}) + P(B \cap \bar{A}) = 0.5$	1
	माना $P(B) = x$	
	तो $P(A \cap \bar{B}) + P(B \cap \bar{A}) = 0.5$	
	$\Rightarrow P(A)P(\bar{B}) + P(B)P(\bar{A}) = 0.5$	
	$\Rightarrow 0.4(1-x) + x(1-0.4) = 0.5$	
	$\Rightarrow 0.4 - 0.4x + 0.6x = 0.5$	
	$\Rightarrow 0.2x = 0.5 - 0.4 = 0.1$	
	$\Rightarrow x = \frac{0.1}{0.2} = \frac{1}{2} = 0.5$	4
	ा	1
	उनमें से कम से कम एक के चयन की संभावना $1 - P(\bar{A} \cap \bar{B})$	
	$1 - P(\bar{A})P(\bar{B})$	
	$1 - 0.6 \times 0.5$	1
	1 - 0.3 = 0.7	1
	ria re flot are 1 Abrana à mor à	
	खंड घ दीर्ध उत्तर (LA)प्रकार के प्रश्न हैं ,	
	खड घ दाघ उत्तर (LA)प्रकार के प्रश्न ह , प्रत्येक 5 अंक का है)	
32	प्रत्येक 5 अंक का है) 3 -6 -1 1 -2 -1 1 0 0	
32	प्रत्येक 5 अंक का है) 3 -6 -1 1 -2 -1 1 0 0	1
32	प्रत्येक 5 अंक का है) $AB = \begin{bmatrix} 2 & -5 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} = I$ $-2 & 4 & 1 & 2 & 0 & 3 & 0 & 0 & 1$	1
32	प्रत्येक 5 अंक का है)	
32	प्रत्येक 5 अंक का है)	1 1/2
32	प्रत्येक 5 अंक का है) $ 3 -6 -1 1 -2 -1 1 0 0 \\ AB = \begin{bmatrix} 2 -5 -1 \end{bmatrix} \begin{bmatrix} 0 -1 -1 \end{bmatrix} = \begin{bmatrix} 0 1 0 \end{bmatrix} = I \\ -2 4 1 2 0 3 0 0 1 \\ \text{इसलिए, } A^{-1} = B \pi \mathfrak{A} \mathbb{B}^{-1} = A \\ \text{समीकरणों का दिया हुआ निकाय} \\ 3x - 6y - z = 3,2x - 5y - z + 2 = 0,-2x + 4y + z = 5 $	
32	प्रत्येक 5 अंक का है)	½ ½
32	प्रत्येक 5 अंक का है) $3 -6 -1 1 -2 -1 1 0 0$ $AB = \begin{bmatrix} 2 -5 -1 \end{bmatrix} \begin{bmatrix} 0 -1 -1 \end{bmatrix} = \begin{bmatrix} 0 1 0 \end{bmatrix} = I$ $-2 4 1 2 0 3 0 0 1$ इसलिए, $A^{-1} = B$ तथा $B^{-1} = A$ समीकरणों का दिया हुआ निकाय $3x - 6y - z = 3,2x - 5y - z + 2 = 0,-2x + 4y + z = 5$ आव्यूह रूप में इसे इस प्रकार लिखा जा सकता है: $AX = C$,	1/2
32	प्रत्येक 5 अंक का है) $ 3 -6 -1 1 -2 -1 1 0 0 \\ AB = \begin{bmatrix} 2 -5 -1 \end{bmatrix} \begin{bmatrix} 0 -1 -1 \end{bmatrix} = \begin{bmatrix} 0 1 0 \end{bmatrix} = I \\ -2 4 1 2 0 3 0 0 1 \\ \hline $	½ ½
32	प्रत्येक 5 अंक का है) $3 -6 -1 1 -2 -1 1 0 0$ $AB = \begin{bmatrix} 2 -5 -1 \end{bmatrix} \begin{bmatrix} 0 -1 -1 \end{bmatrix} = \begin{bmatrix} 0 1 0 \end{bmatrix} = I$ $-2 4 1 2 0 3 0 0 1$ इसिलिए, $A^{-1} = B$ तथा $B^{-1} = A$ समीकरणों का दिया हुआ निकाय $3x - 6y - z = 3,2x - 5y - z + 2 = 0, -2x + 4y + z = 5$ आव्यूह रूप में इसे इस प्रकार लिखा जा सकता है: $AX = C$, $x 3$ जहाँ $X = \begin{bmatrix} y \end{bmatrix}$ तथा $C = \begin{bmatrix} -2 \end{bmatrix}$ $z 5$ यहाँ $ A = -3 - 0 + 2 = -1 \neq 0$	½ ½ ½ ½ ½
32	प्रत्येक 5 अंक का है) $3 -6 -1 1 -2 -1 1 0 0$ $AB = \begin{bmatrix} 2 -5 -1 \end{bmatrix} \begin{bmatrix} 0 -1 -1 \end{bmatrix} = \begin{bmatrix} 0 1 0 \end{bmatrix} = I$ $-2 4 1 2 0 3 0 0 1$ इसिलिए, $A^{-1} = B$ तथा $B^{-1} = A$ समीकरणों का दिया हुआ निकाय $3x - 6y - z = 3,2x - 5y - z + 2 = 0, -2x + 4y + z = 5$ आव्यूह रूप में इसे इस प्रकार लिखा जा सकता है: $AX = C$, $x 3$ जहाँ $X = \begin{bmatrix} y \end{bmatrix}$ तथा $C = \begin{bmatrix} -2 \end{bmatrix}$ $z 5$ यहाँ $ A = -3 - 0 + 2 = -1 \neq 0$ इसिलिए, निकाय सुसंगत है और इसका अद्वितीय हल व्यंजक $X = A^{-1}C = BC$ द्वारा दिया	½ ½ ½
32	प्रत्येक 5 अंक का है) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	½ ½ ½ ½ ½
32	प्रत्येक 5 अंक का है) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	½ ½ ½ ½ ½ ½ ½
32	प्रत्येक 5 अंक का है) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	½ ½ ½ ½ ½
32	प्रत्येक 5 अंक का है) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	½ ½ ½ ½ ½ ½ ½
32	प्रत्येक 5 अंक का है) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	½ ½ ½ ½ ½ ½ ½
32	प्रत्येक 5 अंक का है) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	½ ½ ½ ½ ½ ½ 1/2 1/2 1/2 1/2

33A	माना $x = \tan \theta \implies dx = \sec^2 \theta \ d\theta$	1/
33A	σ	1/2
	$I = \int_0^{\frac{\pi}{4}} \frac{\log(1 + tan\theta)}{1 + tan^2\theta} \cdot sec^2\theta d\theta$	
	$I = \int_0^{\frac{\pi}{4}} \log \left(1 + \tan \theta \right) d\theta \qquad = \int_0^{\frac{\pi}{4}} \log \left[1 + \tan \left(\frac{\pi}{4} - \theta \right) \right] d\theta$	1
	$= \int_0^{\frac{\pi}{4}} \log[1 + \frac{1 - \tan \theta}{1 + \tan \theta}] d\theta$	1
	$= \int_0^{\frac{\pi}{4}} \log\left[\frac{1 + \tan\theta + 1 - \tan\theta}{1 + \tan\theta}\right] d\theta$	
	$= \int_0^{\frac{\pi}{4}} \log\left[\frac{2}{1 + \tan \theta}\right] d\theta$	1
	$= \int_0^{\frac{\pi}{4}} \log 2 d\theta - \int_0^{\frac{\pi}{4}} \log[1 + \tan \theta] d\theta$	1
	$\log 2 \times x \Big]_0^{\frac{\pi}{4}} - I$	1
	$\Rightarrow 2I = \frac{\pi}{4} \log 2$	
	$\Rightarrow I = \frac{\pi}{8} \log 2$	1/2
	अथवा	
33B	$I = \int \frac{(3\sin\theta - 2)\cos\theta}{5 - \cos^2\theta - 4\sin\theta} d\theta = \int \frac{(3\sin\theta - 2)\cos\theta}{5 - (1 - \sin^2\theta) - 4\sin\theta} d\theta$	अथवा
	माना $\sin \theta = t \Longrightarrow \cos \theta d\theta = dt$	1/2
	$I = \int \frac{(3t-2)}{5-(1-t^2)-4t} dt$	72
	$= \int \frac{(3t-2)}{t^2-4t+4} dt = \int \frac{3t-2}{(t-2)^2} dt$	1
	माना $\frac{3t-2}{(t-2)^2} = \frac{A}{(t-2)} + \frac{B}{(t-2)^2}$	_
	3t - 2 = A(t - 2) + B	
	दोनों पक्षों में ੮ के गुणांकों और स्थिर पदों की तुलना करने पर	
	A = 3, -2A + B = -2, B = 4	
	$\int \frac{(3\sin\theta - 2)\cos\theta}{5 - \cos^2\theta - 4\sin\theta} d\theta = \int \frac{3}{t - 2} dt + \int \frac{4}{(t - 2)^2} dt$	1/2 +1/2
	$= 3\log t - 2 - \frac{4}{t - 2} + C$	1+1
	$= 3\log \sin\theta - 2 - \frac{4}{\sin\theta - 2} + C$	1/2
34A	$y + \frac{d}{dx}(xy) = x(\sin x + x)$	
	$\Rightarrow y + (x \frac{dy}{dx} + y) = x(\sin x + x)$	1
	$\Rightarrow 2y + x \frac{dy}{dx} = x(\sin x + x)$	
	$\Rightarrow \frac{dy}{dx} + \frac{2y}{x} = (\sin x + x)$	
	यह एक रैखिक अवकल समीकरण $\frac{dy}{dx} + Py = Q$ के रूप में है	1
	जहाँ $P=\frac{2}{x}$,Q=(sinx + x)	
	$I.F = e^{\int \frac{2}{x} dx} = e^{2\log x} = e^{\log x^2} = x^2$	1
	हल होगा y . I.F = $\int Q . IF dx$ $yx^2 = \int (\sin x + x)x^2 dx$	
	$yx^2 = \int \sin x \cdot x^2 dx + \int x^3 dx$	1
	$\Rightarrow yx^2 = -x^2\cos x + 2\int x\cos x dx + \frac{x^4}{4} + C$	
	$\Rightarrow yx^2 = -x^2\cos x + 2(x\sin x + \cos x) + \frac{x^4}{4} + C \text{ जो कि आवश्यक हल } है$	1

	अथवा	
34B	$2ye^{\frac{x}{y}}dx + (y - 2xe^{\frac{x}{y}}) dy = 0$	1
	, , , , , , , , , , , , , , , , , , , ,	
	$\Rightarrow \frac{dx}{dy} = \frac{2xe^{\frac{x}{y}} - y}{2ye^{\frac{x}{y}}} = \frac{2\frac{x}{y}e^{\frac{x}{y}} - 1}{2e^{\frac{x}{y}}}$	
	यह समघातीय अवकल समीकरण है	1
	माना $x = vy \Rightarrow \frac{dx}{dy} = v + y \frac{dv}{dy}$	
	$v + y \frac{dv}{dy} = \frac{2ve^v - 1}{2e^v}$	
	$\Rightarrow y \frac{dv}{dy} = \frac{2ve^v - 1}{2e^v} - v = \frac{2ve^v - 1 - 2ve^v}{2e^v}$	
	$\Rightarrow y \frac{dv}{dy} = \frac{-1}{2e^v}$	1
	$\Rightarrow 2e^{v} dv = -\frac{dy}{y}$	
	$\int 2e^{\nu}d\nu = -\int \frac{dy}{y}$	
	$\Rightarrow 2e^{v} = -\log y + C$	1
	$\Rightarrow 2e^{\frac{\lambda}{y}} + \log y = C$	1
	जब x=0,y=1, C = 2	1
	आवश्यक हल है $2e^{\frac{1}{y}} + \log y = 2$	1
35	माना $\frac{x-1}{3} = \frac{y-0}{-1} = \frac{z+1}{0} = \lambda$ \Rightarrow इस पर कोई बिन्दु है $(3 \lambda + 1, -\lambda, -1)$	1/2
	बिन्दु के लिए जहाँ $y=1$ \Rightarrow $\lambda=-1$	1
	$\Rightarrow \qquad \widehat{ब} = \overline{q} \ \widehat{g} \ (-2,1,-1)$	1/2
	दो रेखाओं के दिक् हैं $\vec{m}=3\hat{\imath}-\hat{\jmath}$	1
	तथा $\vec{n}=-2\hat{\imath}+2\hat{\jmath}+\hat{k}$	1/2
	$\vec{m} \times \vec{n} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & -1 & 0 \end{vmatrix} = -\hat{\imath} - 3\hat{\jmath} + 4\hat{k}$	1
	─2 2 1 ज्ञात की जाने वाली रेखा की समीकरण है	1
	$\vec{r} = (-2\hat{i} + \hat{j} - \hat{k}) + \mu(-\hat{i} - 3\hat{j} + 4\hat{k})$	1/2
	}-0	,,,
	वैकल्पिक हल :	
	माना $\frac{x-1}{3} = \frac{y-0}{-1} = \frac{z+1}{0} = \lambda \Rightarrow $ इस पर कोई बिन्दु है $(3\lambda + 1, -\lambda, -1)$	1/2
	उस बिन्दु के लिए जहाँ $y=1\Rightarrow \lambda=-1$	1
	⇒ बिन्दु होगा (-2,1,-1)	1/2
	माना कि a, b, c अज्ञात समीकरण के दिक् अनुपात है तब $3a-b=0$	
	तथा $-2a + 2b + c = 0$	1
	हल करने पर $\frac{a}{-1} = \frac{-b}{3} = \frac{c}{4} \Rightarrow \frac{a}{-1} = \frac{b}{-3} = \frac{c}{4}$	1
	अज्ञात रेखा है : $\frac{x+2}{-1} = \frac{y-1}{-3} = \frac{z+1}{4} = \mu$	1/2
	सदिश के रूप में $\vec{r} = (-2\hat{\imath} + \hat{\jmath} - \hat{k}) + \mu(-\hat{\imath} - 3\hat{\jmath} + 4\hat{k})$	1/2

	खंड –ड़	
	(3 केस-स्टडी/गद्यांश-आधारित प्रश्न प्रत्येक 4 अंक का)	
36	।. यातायात प्रवाह स्वतुल्य नहीं है क्योंकि $(A,A) \notin R$ (या कोई भी प्रमुख स्थान स्वयं से	1
	जुड़ा नहीं है)	1
	॥. यातायात प्रवाह संक्रामक नहीं है क्योंकि $(A,B) \in R$ और $(B,E) \in R$, परंतु $(A,E) \notin R$ ॥।. $A. R = \{(A,B),(A,C),(A,D),(B,C),(B,E),(C,E),(D,E),(D,C)\}$	
	प्रांत = $\{A, B, C, D\}$	$\frac{1}{\frac{1}{2} + \frac{1}{2}}$
	परिसर = $\{B, C, D, E\}$	/2 1 /2
	अथवा	
	Ⅲ. B.नहीं, ट्रैफ़िक प्रवाह किसी फलन को निरूपित नहीं करता क्योंकि A की तीन छवियाँ हैं ।	1+1
37	I. $P(x) = R(x) - C(x) = -0.3x^2 + 20x - (0.5x^2 - 10x + 150)$	
	$= -0.8x^2 + 30x - 150$	1
	॥. क्रांतिक बिंदुओं के लिए $P'(x) = 0 \Rightarrow -1.6x + 30 = 0$	
	$\Rightarrow x = \frac{30}{1.6} = \frac{300}{16} = 18.75$	1
	विशेष रूप से $P''(18.75) = -1.6 < 0$ इसलिए ,क्रांतिक मान $x=18.75$ अधिकतम लाभ के अनुरूप है	1 1
	9	1
	अथवा	
	॥। B. क्योंकि x बल्बों की संख्या को दर्शाता है इसलिए विशेष रूप से 18 बल्ब अधिकतम लाभ के अनुरूप है	
	अधिकतम लाभ है $P(18) = -0.8 \times 18^2 + 30 \times 18 - 150$	1
	=-259.2 + 540 - 150	1
	=540 - 409.2 = ₹130.80	1
38	घटनाओं को इस प्रकार मानें E1: छात्र पहले समूह में है (स्क्रीन पर बिताया गया समय 4 घंटे से	
	अधिक है)	
	E2: छात्र दूसरे समूह में है (स्क्रीन पर बिताया गया समय 2 से 4 घंटे है)	
	E3: छात्र तीसरे समूह में है (स्क्रीन पर बिताया गया समय 2 घंटे से कम है)	
	A: छात्र द्वारा चिंता और कम अवधारण के लक्षण दर्शाने की घटना	
	$P(E_1) = \frac{60}{100}$ $P(E_2) = \frac{30}{100}$ and $P(E_3) = \frac{10}{100}$	
	$P(E_1) = \frac{60}{100} \qquad P(E_2) = \frac{30}{100} \qquad \text{and } P(E_3) = \frac{10}{100}$ $P(A E_1) = \frac{80}{100} \qquad P(A E_2) = \frac{70}{100} \qquad \text{and } P(A E_3) = \frac{30}{100}$	
	I. $P(A) = P(E_1) \times P(A E_1) + P(E_2) \times P(A E_2) + P(E_3) \times P(A E_3)$	2
	$= \frac{60}{100} \times \frac{80}{100} + \frac{30}{100} \times \frac{70}{100} + \frac{10}{100} \times \frac{30}{100} = \frac{72}{100} = 72\%$	
	II. $P(E_1 A) = \frac{P(E_1 \cap A)}{P(A)}$	
	$=\frac{\left(\frac{60}{100}x\frac{80}{100}\right)}{\left(\frac{72}{100}\right)} = \frac{48}{72} = \frac{2}{3}$	2