<table>
<thead>
<tr>
<th>Question No</th>
<th>Answer</th>
<th>Hints/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(c)</td>
<td>In a skew-symmetric matrix, the (i, j)th element is negative of the (j, i)th element. Hence, the (i, i)th element = 0.</td>
</tr>
<tr>
<td>2.</td>
<td>(a)</td>
<td>$</td>
</tr>
<tr>
<td>3.</td>
<td>(b)</td>
<td>The area of the parallelogram with adjacent sides AB and $AC =</td>
</tr>
<tr>
<td>4.</td>
<td>(c)</td>
<td>The function f is continuous at $x = 0$ if $\lim_{x \to 0} f(x) = f(0)$. We have $f(0) = k$ and $\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(1 - \cos \frac{1}{8x^2}\right) = \lim_{x \to 0} \left(\frac{2\sin^2 \frac{2x}{8x^2}}{4x^2}\right) = \lim_{x \to 0} \left(\frac{\sin \frac{2x}{2x}}{2x}\right)^2 = 1$. Hence, $k = 1$.</td>
</tr>
<tr>
<td>5.</td>
<td>(b)</td>
<td>$\frac{x^2}{2} + \log</td>
</tr>
<tr>
<td>6.</td>
<td>(c)</td>
<td>The given differential equation is $4\left(\frac{dy}{dx}\right)^3 \frac{d^2 y}{dx^2} = 0$. Here, $m = 2$ and $n = 1$. Hence, $m + n = 3$.</td>
</tr>
<tr>
<td>7.</td>
<td>(b)</td>
<td>The strict inequality represents an open half plane and it contains the origin as $(0, 0)$ satisfies it.</td>
</tr>
<tr>
<td>8.</td>
<td>(a)</td>
<td>Scalar Projection of $3\hat{i} - \hat{j} - 2\hat{k}$ on vector $\hat{i} + 2\hat{j} - 3\hat{k} = \frac{(3\hat{i} - \hat{j} - 2\hat{k}) \cdot (i + 2j - 3k)}{</td>
</tr>
<tr>
<td>9.</td>
<td>(c)</td>
<td>$\int_2^3 \frac{x}{x^2 + 1} = \frac{1}{2} \left[\log(x^2 + 1)\right]_2^3 = \frac{1}{2} \left(\log 10 - \log 5\right) = \frac{1}{2} \log\left(\frac{10}{5}\right) = \frac{1}{2} \log 2$.</td>
</tr>
<tr>
<td>10.</td>
<td>(c)</td>
<td>$(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$.</td>
</tr>
<tr>
<td>11.</td>
<td>(d)</td>
<td>The minimum value of the objective function occurs at two adjacent corner points $(0.6, 1.6)$ and $(3, 0)$ and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line-segment joining the two points.</td>
</tr>
<tr>
<td>12.</td>
<td>(d)</td>
<td>$2 - 20 = 2x^2 - 24 \implies 2x^2 = 6 \implies x^2 = 3 \implies x = \pm \sqrt{3}$.</td>
</tr>
<tr>
<td>13.</td>
<td>(b)</td>
<td>$</td>
</tr>
<tr>
<td>14.</td>
<td>(c)</td>
<td>$P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$.</td>
</tr>
<tr>
<td>15.</td>
<td>(c)</td>
<td>$ydx - xdy = 0 \implies ydx - xdy = 0 \implies \frac{dy}{y} = \frac{dx}{x} \implies \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \implies \log</td>
</tr>
</tbody>
</table>
16. (a) \[y = \sin^{-1}x \]
\[
\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} \Rightarrow \sqrt{1-x^2} \frac{dy}{dx} = 1
\]
Again, differentiating both sides w. r. to \(x \), we get
\[
\sqrt{1-x^2} \frac{d^2y}{dx^2} + \frac{dy}{dx} \left(\frac{-2x}{2\sqrt{1-x^2}} \right) = 0
\]
Simplifying, we get \((1-x^2)y_2 = xy_1\)

17. (b) \[|\vec{a} - 2\vec{b}|^2 = (\vec{a} - 2\vec{b}) \cdot (\vec{a} - 2\vec{b}) \]
\[
|\vec{a} - 2\vec{b}|^2 = \vec{a} \cdot \vec{a} - 4\vec{a} \cdot \vec{b} + 4\vec{b} \cdot \vec{b}
\]
\[= |\vec{a}|^2 - 4\vec{a} \cdot \vec{b} + 4|\vec{b}|^2\]
\[= 4 - 16 + 36 = 24\]
\[|\vec{a} - 2\vec{b}|^2 = 24 \implies |\vec{a} - 2\vec{b}| = 2\sqrt{6}\]

18. (b) The line through the points (0, 5, -2) and (3, -1, 2) is
\[
\frac{x - 3}{3 - 0} = \frac{y - 5}{-1 - 5} = \frac{z + 2}{2 + 2}
\]
\[\text{or,} \quad \frac{x}{3} = \frac{y - 5}{-6} = \frac{z + 2}{4}\]
Any point on the line is \((3k, -6k + 5, 4k - 2)\), where \(k \) is an arbitrary scalar.
\[3k = 6 \implies k = 2\]
The z-coordinate of the point \(P \) will be \(4 \times 2 - 2 = 6 \)

19. (c) \(\sec^{-1}x \) is defined if \(x \leq -1 \) or \(x \geq 1 \). Hence, \(\sec^{-1}2x \) will be defined if \(x \leq -\frac{1}{2} \) or \(x \geq \frac{1}{2} \).
Hence, A is true.
The range of the function \(\sec^{-1}x \) is \([0, \pi] - \{\frac{\pi}{2}\}\)
R is false.

20. (a) The equation of the x-axis may be written as \(\vec{r} = t\hat{i} \). Hence, the acute angle \(\theta \) between the given line and the x-axis is given by
\[\cos\theta = \frac{|1 \times 1 + (-1) \times 0 + 0 \times 0|}{\sqrt{1^2 + (-1)^2 + 0^2} \times \sqrt{1^2 + 0^2 + 0^2}} = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}\]

SECTION B (VSA questions of 2 marks each)

21. \[
sin^{-1}[\sin\left(\frac{13\pi}{7}\right)] = \sin^{-1}[\sin\left(\frac{2\pi - \frac{\pi}{7}}{\frac{\pi}{7}}\right)]\]
\[= \sin^{-1}\left[\sin\left(-\frac{\pi}{7}\right)\right] = -\frac{\pi}{7}\]
\[\text{OR}\]
Let \(y \in N \) (codomain). Then \(\exists \) \(2y \in N \) (domain) such that
\[
f(2y) = \frac{2y}{2} = y. \text{ Hence, } f \text{ is surjective.}\]
\[1, 2 \in N \text{ (domain) such that } f(1) = 1 = f(2)\]
Hence, \(f \) is not injective.

22. Let \(AB \) represent the height of the street light from the ground. At any time \(t \) seconds, let the man represented as \(ED \) of height 1.6 m be at a distance of \(x \) m from \(AB \) and the length of his shadow \(EC \) be \(y \) m.
Using similarity of triangles, we have
\[
\frac{4}{1.6} = \frac{x+y}{y} \Rightarrow 3y = 2x\]
\[\frac{1}{2}\]
Differentiating both sides w.r.to, we get \(\frac{dy}{dt} = 2 \frac{dx}{dt} \)
\[
\frac{dy}{dt} = 2 \times 0.3 \Rightarrow \frac{dy}{dt} = 0.2
\]
At any time \(t \) seconds, the tip of his shadow is at a distance of \((x + y)\) m from \(AB \).
The rate at which the tip of his shadow moving
\[
\frac{dx}{dt} + \frac{dy}{dt} m/s = 0.5 m/s
\]
\[
\frac{dy}{dt} m/s = 0.2 m/s
\]
The rate at which his shadow is lengthening
\[
\frac{dx}{dt} m/s = 0.5 m/s
\]

23. \(\vec{a} = \hat{i} - \hat{j} + 7\hat{k} \) and \(\vec{b} = 5\hat{i} - \hat{j} + \lambda\hat{k} \)
Hence \(\vec{a} + \vec{b} = 6\hat{i} - 2\hat{j} + (7 + \lambda)\hat{k} \) and \(\vec{a} - \vec{b} = -4\hat{i} + (7 - \lambda)\hat{k} \)
\(\vec{a} + \vec{b} \) and \(\vec{a} - \vec{b} \) will be orthogonal if, \((\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0\)
i.e., if, \(-24 + (49 - \lambda^2) = 0 \Rightarrow \lambda^2 = 25\)
i.e., if, \(\lambda = \pm 5\)

OR
The equations of the line are \(6x - 12 = 3y + 9 = 2z - 2 \), which, when written in standard symmetric form, will be
\[
\frac{x-2}{6} = \frac{y-3}{3} = \frac{z-1}{2}
\]
Since, lines are parallel, we have \(\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \)
Hence, the required direction ratios are \(\left(\frac{1}{6}, \frac{1}{3}, \frac{1}{2} \right) \) or \((1,2,3)\)
and the required direction cosines are \(\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}} \right) \)

24. \(y\sqrt{1 - x^2} + x\sqrt{1 - y^2} = 1 \)
Let \(\sin^{-1}x = A \) and \(\sin^{-1}y = B \). Then \(x = \sin A \) and \(y = \sin B \)
\(y\sqrt{1 - x^2} + x\sqrt{1 - y^2} = 1 \Rightarrow \sin B\cos A + \sin A\cos B = 1 \)
\(\Rightarrow \sin(A + B) = 1 \Rightarrow A + B = \sin^{-1}1 = \frac{\pi}{2} \)
\(\Rightarrow \sin^{-1}x + \sin^{-1}y = \frac{\pi}{2} \)
Differentiating w.r.to \(x \), we obtain \(\frac{dy}{dx} = -\frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}} \)

25. Since \(\vec{a} \) is a unit vector, \(\therefore |\vec{a}| = 1 \)
\[
\begin{align*}
(x - \hat{a}) \cdot (x + \hat{a}) &= 12. \\
\Rightarrow x \cdot \hat{x} + \hat{x} \cdot \hat{a} - \hat{a} \cdot \hat{x} - \hat{a} \cdot \hat{a} &= 12 \quad \frac{1}{2} \\
\Rightarrow |\hat{x}|^2 - |\hat{a}|^2 &= 12. \\
\Rightarrow |\hat{x}|^2 - 1 &= 12 \\
\Rightarrow |\hat{x}|^2 &= 13 \Rightarrow |\hat{x}| = \sqrt{13} \\
\end{align*}
\]

SECTION C
(Short Answer Questions of 3 Marks each)

26. \[
\int \frac{dx}{\sqrt{3 - 2x - x^2}} \\
= \int \frac{dx}{\sqrt{-x^2 + 2x - 3}} = \int \frac{dx}{\sqrt{4 - (x+1)^2}} \quad 2 \\
= \sin^{-1}\left(\frac{x+1}{2}\right) + C \left[\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C \right] \quad 1
\]

27. \[
P(\text{not obtaining an odd person in a single round}) = P(\text{All three of них throw tails or All three of them throw heads}) \\
= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times 2 = \frac{1}{4} \quad \frac{1+1/2}{2} \\
P(\text{obtaining an odd person in a single round}) \\
= 1 - P(\text{not obtaining an odd person in a single round}) = \frac{3}{4} \quad \frac{1}{2} \\
The required probability \\
= P(\text{‘In first round there is no odd person’ and ‘In second round there is no odd person’ and ‘In third round there is an odd person’}) \\
= \frac{1}{4} \times \frac{1}{2} \times \frac{3}{4} = \frac{3}{64} \quad 1
\]

OR

Let X denote the Random Variable defined by the number of defective items.

\[
P(X=0) = \frac{4}{6} \times \frac{3}{5} = \frac{2}{5} \\
P(X=1) = 2 \times \left(\frac{2}{6} \times \frac{4}{5}\right) = \frac{8}{15} \quad 2 \\
P(X=2) = \frac{2}{6} \times \frac{1}{5} = \frac{1}{15} \quad 2
\]

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_i)</td>
<td>(\frac{2}{5})</td>
<td>(\frac{8}{15})</td>
<td>(\frac{1}{15})</td>
</tr>
<tr>
<td>(p_ix_i)</td>
<td>0</td>
<td>(\frac{8}{15})</td>
<td>(\frac{2}{15})</td>
</tr>
</tbody>
</table>

Mean = \(\sum p_ix_i = \frac{10}{15} = \frac{2}{3}\) \quad \frac{1}{2}

28. \[
\int_{\pi/6}^{\pi/3} \frac{dx}{1+\sqrt{\tan x}} = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x}}{\sin x + \sqrt{\cos x}} \ dx \quad \text{...(i)}
\]
Using \(\int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \)

\[
1 = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos\left(\frac{\pi}{6} + \frac{\pi}{2} - x\right)}}{\sqrt{\sin\left(\frac{\pi}{6} + \frac{\pi}{2} - x\right)} + \sqrt{\cos\left(\frac{\pi}{6} + \frac{\pi}{2} - x\right)}} \, dx
\]

\[
1 = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\cos x + \sqrt{\sin x}}} \, dx \quad \text{(ii)}.
\]

Adding (i) and (ii), we get

\[
2I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x}}{\sqrt{\sin x + \sqrt{\cos x}}} \, dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\cos x + \sqrt{\sin x}}} \, dx
\]

\[I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x}}{\sqrt{\sin x + \sqrt{\cos x}}} \, dx \quad \text{OR} \]

\[
\int_0^4 |x - 1| \, dx = \int_0^1 (1-x) \, dx + \int_1^4 (x-1) \, dx
\]

\[= \left[x - \frac{x^2}{2} \right]_0^1 + \left[\frac{x^2}{2} - x \right]_1^4 = (1 - \frac{1}{2}) + (8 - 4) - \left(\frac{1}{2} - 1 \right) = 5
\]

29. \(y \, dx + (x - y^2) \, dy = 0 \)

Reducing the given differential equation to the form \(\frac{dx}{dy} + P \, x = Q \) we get, \(\frac{dx}{dy} + \frac{x}{y} = y \)

\[\text{IF} = e^{\int P \, dy} = e^{\int \frac{1}{y} \, dy} = e^{\log y} = y
\]

The general solution is given by

\[
x \times \text{IF} = \int Q \times \text{IF} \, dy \Rightarrow xy = \int y^2 \, dy
\]

\[\Rightarrow xy = \frac{y^3}{3} + C, \text{ which is the required general solution}
\]

OR

\(x \, dy - y \, dx = \sqrt{x^2 + y^2} \, dx \)

It is a Homogeneous Equation as

\[\frac{dy}{dx} = \frac{\sqrt{x^2 + y^2} + y}{x} = \sqrt{1 + \left(\frac{y}{x} \right)^2 + \frac{y}{x}} = f \left(\frac{y}{x} \right).
\]

Put \(y = vx \)

\[
\frac{dy}{dx} = v + x \frac{dv}{dx}
\]
\[v + x \frac{dv}{dx} = \sqrt{1 + v^2} + v \]

Separating variables, we get
\[\frac{dv}{\sqrt{1 + v^2}} = \frac{dx}{x} \]

Integrating, we get
\[\log|v + \sqrt{1 + v^2}| = \log|x| + \log K, \quad K > 0 \]

\[\log \left| y + \sqrt{x^2 + y^2} \right| = \log x^2 K \]

\[\Rightarrow y + \sqrt{x^2 + y^2} = \pm Kx^2 \]

\[\Rightarrow y + \sqrt{x^2 + y^2} = Cx^2, \text{ which is the required general solution} \]

30. We have \(Z = 400x + 300y \) subject to \(x + y \leq 200, x \leq 40, x \geq 20, y \geq 0 \)

The corner points of the feasible region are C(20,0), D(40,0), B(40,160), A(20,180)

<table>
<thead>
<tr>
<th>Corner Point</th>
<th>(Z = 400x + 300y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(20,0)</td>
<td>8000</td>
</tr>
<tr>
<td>D(40,0)</td>
<td>16000</td>
</tr>
<tr>
<td>B(40,160)</td>
<td>64000</td>
</tr>
<tr>
<td>A(20,180)</td>
<td>62000</td>
</tr>
</tbody>
</table>

Maximum profit occurs at \(x = 40, y = 160 \)
and the maximum profit = \(\text{₹} 64,000 \)

31. \[\int \frac{x^3 + x + 1}{(x^2 - 1)} \ dx = \int \left(x + \frac{2x + 1}{(x-1)(x+1)} \right) \ dx \]

Now resolving \(\frac{2x + 1}{(x-1)(x+1)} \) into partial fractions as

\[\frac{2x + 1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1} \]

We get
\[\frac{2x + 1}{(x-1)(x+1)} = \frac{3}{2(x-1)} + \frac{1}{2(x+1)} \]
Hence, \(\int \frac{x^3 + x + 1}{x^2 - 1} \, dx = \int \left(x + \frac{2x + 1}{(x-1)(x+1)} \right) \, dx \)
\[= \int \left(x + \frac{3}{2(x-1)} + \frac{1}{2(x+1)} \right) \, dx \]
\[= \frac{x^2}{2} + \frac{3}{2} \log|x - 1| + \frac{1}{2} \log|x + 1| + C \]
\[= \frac{x^2}{2} + \frac{1}{2} \left(\log|x - 1|^3 (x + 1) \right) + C \)

\[\text{SECTION D} \]

\((\text{Long answer type questions (LA) of 5 marks each})\)

32. The points of intersection of the parabola \(y = x^2\) and the line \(y = x\) are \((0, 0)\) and \((1, 1)\).

Required Area = \(\int_0^1 y_{\text{parabola}} \, dx + \int_1^2 y_{\text{line}} \, dx\)

Required Area = \(\int_0^1 x^2 \, dx + \int_2^1 x \, dx \)
\[= \left[\frac{x^3}{3} \right]_0^1 + \left[\frac{x^2}{2} \right]_1^2 = \frac{1}{3} + \frac{3}{2} = \frac{11}{6} \)

33. Let \((a, b) \in N \times N\). Then we have \(ab = ba\) (by commutative property of multiplication of natural numbers)

\[\Rightarrow (a, b) R (a, b) \]

Hence, \(R\) is reflexive.

Let \((a, b), (c, d) \in N \times N\) such that \((a, b) R (c, d)\). Then \(ad = bc\)

\[\Rightarrow cb = da \text{ (by commutative property of multiplication of natural numbers)} \]

\[\Rightarrow (c, d) R (a, b) \]

Hence, \(R\) is symmetric.

Let \((a, b), (c, d), (e, f) \in N \times N\) such that
(a, b) R (c, d) and (c, d) R (e, f).
Then \(ad = bc, \ cf = de \)
\[\Rightarrow adcf = bcde \]
\[\Rightarrow af = be \]
\[\Rightarrow (a, b)R(e, f) \]
Hence, R is transitive.
Since, R is reflexive, symmetric and transitive, R is an equivalence relation on \(N \times N \).

OR

Let \(A \in P(X) \). Then \(A \subset A \)
\[\Rightarrow (A, A) \in R \]
Hence, R is reflexive.
Let \(A, B, C \in P(X) \) such that
\((A, B), (B, C) \in R \)
\[\Rightarrow A \subset B, B \subset C \]
\[\Rightarrow A \subset C \]
\[\Rightarrow (A, C) \in R \]
Hence, R is transitive.
\(\emptyset, X \in P(X) \) such that \(\emptyset \subset X \).
Hence, \((\emptyset, X) \in R \).
But, \(X \not\subset \emptyset \), which implies that \((X, \emptyset) \not\in R \).
Thus, R is not symmetric.

34. The given lines are non-parallel lines. There is a unique line-segment PQ (P lying on one and Q on the other, which is at right angles to both the lines. PQ is the shortest distance between the lines. Hence, the shortest possible distance between the insects = PQ

The position vector of P lying on the line
\[\vec{r} = 6\hat{i} + 2\hat{j} + 2\hat{k} + \lambda(\hat{i} - 2\hat{j} + 2\hat{k}) \]
is \((6 + \lambda)\hat{i} + (2 - 2\lambda)\hat{j} + (2 + 2\lambda)\hat{k} \) for some \(\lambda \)
The position vector of Q lying on the line
\[\vec{r} = -4\hat{i} - \hat{k} + \mu(3\hat{i} - 2\hat{j} - 2\hat{k}) \]
is \((-4 + 3\mu)\hat{i} + (-2\mu)\hat{j} + (-1 - 2\mu)\hat{k} \) for some \(\mu \)
\[\vec{PQ} = (-10 + 3\mu - \lambda)\hat{i} + (-2\mu - 2 + 2\lambda)\hat{j} + (-3 - 2\mu - 2\lambda)\hat{k} \]
Since, PQ is perpendicular to both the lines
\[(-10 + 3\mu - \lambda) + (-2\mu - 2 + 2\lambda)(-2) + (-3 - 2\mu - 2\lambda)2 = 0, \]
\[i.e., \mu - 3\lambda = 4 \quad \text{...(i)} \]
and \((-10 + 3\mu - \lambda)3 + (-2\mu - 2 + 2\lambda)(-2) + (-3 - 2\mu - 2\lambda)(-2) = 0, \)
\[i.e., 17\mu - 3\lambda = 20 \quad \text{...(ii)} \]
solving (i) and (ii) for \(\lambda \) and \(\mu \), we get \(\mu = 1, \lambda = -1. \)
The position vector of the points, at which they should be so that the distance between them is the shortest, are
\[5\hat{i} + 4\hat{j} \text{ and } -\hat{i} - 2\hat{j} - 3\hat{k} \]
\[\vec{PQ} = -6\hat{i} - 6\hat{j} - 3\hat{k} \]
The shortest distance = \[|\vec{PQ}| = \sqrt{6^2 + 6^2 + 3^2} = 9 \]

OR
Eliminating t between the equations, we obtain the equation of the path $\frac{x}{2} = \frac{y}{-4} = \frac{z}{4}$, which are the equations of the line passing through the origin having direction ratios $<2, -4, 4>$. This line is the path of the rocket.

When $t = 10$ seconds, the rocket will be at the point $(20, -40, 40)$. Hence, the required distance from the origin at 10 seconds =

$$\sqrt{20^2 + 40^2 + 40^2} km = 20 \times 3 \text{ km} = 60 \text{ km}$$

The distance of the point $(20, -40, 40)$ from the given line $= \frac{|\overrightarrow{a} \times \overrightarrow{b}|}{|\overrightarrow{b}|} = \frac{|-30x(10t-20)+10k|}{|10t-20+10k|} km = \frac{|-300t+300k|}{|10t-20+10k|} km = 300 \sqrt{3} km$.

SECTION E (Case Studies/Passage based questions of 4 Marks each)

36. (i) $f(x) = -0.1x^2 + mx + 98.6$, being a polynomial function, is differentiable everywhere, hence, differentiable in $(0, 12)$

(ii) $f'(x) = -0.2x + m$

Since, 6 is the critical point,

$f'(6) = 0 \Rightarrow m = 1.2$

(iii) $f(x) = -0.1x^2 + 1.2x + 98.6$

$f'(x) = -0.2x + 1.2 = -0.2(x - 6)$

<table>
<thead>
<tr>
<th>In the Interval</th>
<th>$f'(x)$</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, 6)$</td>
<td>+ve</td>
<td>f is strictly increasing in $[0, 6]$</td>
</tr>
<tr>
<td>$(6, 12)$</td>
<td>-ve</td>
<td>f is strictly decreasing in $[6, 12]$</td>
</tr>
</tbody>
</table>
OR

(iii) \(f(x) = -0.1x^2 + 1.2x + 98.6, \)
\(f'(x) = -0.2x + 1.2, f'(6) = 0, \)
\(f''(x) = -0.2 \)
\(f''(6) = -0.2 < 0 \)
Hence, by second derivative test 6 is a point of local maximum. The local maximum value = \(f(6) = -0.1 \times 6^2 + 1.2 \times 6 + 98.6 = 102.2 \)
We have \(f(0) = 98.6, f(6) = 102.2, f(12) = 98.6 \)
6 is the point of absolute maximum and the absolute maximum value of the function = 102.2.
0 and 12 both are the points of absolute minimum and the absolute minimum value of the function = 98.6.

37. (i)
Let \((x, y) = \left(x, \frac{b}{a} \sqrt{a^2 - x^2} \right) \) be the upper right vertex of the rectangle.
The area function \(A = 2x \times 2 \frac{b}{a} \sqrt{a^2 - x^2} \)
\(= \frac{4b}{a} x \sqrt{a^2 - x^2}, x \in (0, a). \)

(ii) \(\frac{dA}{dx} = \frac{4b}{a} \left[x \times \frac{-x}{\sqrt{a^2 - x^2}} + \sqrt{a^2 - x^2} \right] \)
\(= \frac{4b}{a} \left\{ \frac{a^2 - 2x^2}{\sqrt{a^2 - x^2}} \right\} = - \frac{4b}{a} \times \frac{2 \left(x + \frac{a}{\sqrt{2}} \right) \left(x - \frac{a}{\sqrt{2}} \right)}{\sqrt{a^2 - x^2}} \)
\(\frac{dA}{dx} = 0 \Rightarrow x = \frac{a}{\sqrt{2}} \)
x = \frac{a}{\sqrt{2}} is the critical point.

(iii) For the values of x less than \(\frac{a}{\sqrt{2}} \) and close to \(\frac{a}{\sqrt{2}} \), \(\frac{dA}{dx} > 0 \)
and for the values of x greater than \(\frac{a}{\sqrt{2}} \) and close to \(\frac{a}{\sqrt{2}} \), \(\frac{dA}{dx} < 0 \).
Hence, by the first derivative test, there is a local maximum at the critical point \(x = \frac{a}{\sqrt{2}} \). Since there is only one critical point, therefore, the area of the soccer field is maximum at this critical point \(x = \frac{a}{\sqrt{2}} \).
Thus, for maximum area of the soccer field, its length should be \(a\sqrt{2} \) and its width should be \(b\sqrt{2} \).

OR
(iii) \(A = 2x \times 2 \frac{\beta}{a} \sqrt{a^2 - x^2}, x \in (0, a) \).

Squaring both sides, we get

\[
Z = A^2 = \frac{16\beta^2}{a^2} x^2(a^2-x^2) = \frac{16\beta^2}{a^2} (x^2 a^2 - x^4), x \in (0, a).
\]

A is maximum when \(Z \) is maximum.

\[
dZ = \frac{16\beta^2}{a^2} (2xa^2 - 4x^3) = \frac{32\beta^2}{a^2} x(a + \sqrt{2}x)(a - \sqrt{2}x)
\]

\[
\frac{dZ}{dx} = \frac{32\beta^2}{a^2} (a^2 - 6x^2)
\]

\[
\frac{d^2Z}{dx^2} = \frac{32\beta^2}{a^2} (a^2 - 3a^2) = -64\beta^2 < 0
\]

Hence, by the second derivative test, there is a local maximum value of \(Z \) at the critical point \(x = \frac{a}{\sqrt{2}} \). Since there is only one critical point, therefore, \(Z \) is maximum at \(x = \frac{a}{\sqrt{2}} \), hence, \(A \) is maximum at \(x = \frac{a}{\sqrt{2}} \).

Thus, for maximum area of the soccer field, its length should be \(a\sqrt{2} \) and its width should be \(b\sqrt{2} \).

38. (i) Let \(P \) be the event that the shell fired from A hits the plane and \(Q \) be the event that the shell fired from B hits the plane. The following four hypotheses are possible before the trial, with the guns operating independently:

\(E_1 = PQ, E_2 = \bar{P}Q, E_3 = \bar{P}Q, E_4 = P \bar{Q} \)

Let \(E \) = The shell fired from exactly one of them hits the plane.

\[
P(E_1) = 0.3 \times 0.2 = 0.06, \ P(E_2) = 0.7 \times 0.8 = 0.56, \ P(E_3) = 0.7 \times 0.2 = 0.14, \ P(E_4) = 0.3 \times 0.8 = 0.24
\]

\[
P \left(\frac{E}{E_1} \right) = 0, \ P \left(\frac{E}{E_2} \right) = 0, \ P \left(\frac{E}{E_3} \right) = 1, \ P \left(\frac{E}{E_4} \right) = 1
\]

\[
P(E) = P(E_1)P \left(\frac{E}{E_1} \right) + P(E_2)P \left(\frac{E}{E_2} \right) + P(E_3)P \left(\frac{E}{E_3} \right) + P(E_4)P \left(\frac{E}{E_4} \right)
\]

\[
= 0.14 + 0.24 = 0.38
\]

(ii) By Bayes’ Theorem,

\[
P \left(\frac{E_3}{E} \right) = \frac{P(E_3)P \left(\frac{E}{E_3} \right)}{P(E_1)P \left(\frac{E}{E_1} \right) + P(E_2)P \left(\frac{E}{E_2} \right) + P(E_3)P \left(\frac{E}{E_3} \right) + P(E_4)P \left(\frac{E}{E_4} \right)}
\]

\[
= \frac{0.14 \times 7}{0.38 \times 19}
\]

NOTE: The four hypotheses form the partition of the sample space and it can be seen that the sum of their probabilities is 1. The hypotheses \(E_1 \) and \(E_2 \) are actually eliminated as \(P \left(\frac{E}{E_1} \right) = P \left(\frac{E}{E_2} \right) = 0 \)

Alternative way of writing the solution:

(i) \(P(\text{Shell fired from exactly one of them hits the plane}) \)

\[
= P(\text{Shell from A hits the plane and Shell from B does not hit the plane}) \lor (\text{Shell from A does not hit the plane and Shell from B hits the plane})
\]

\[
= 0.3 \times 0.8 + 0.7 \times 0.2 = 0.38
\]

(ii) \(P(\text{Shell fired from B hit the plane/Exactly one of them hit the plane}) \)

\[
= P(\text{Shell fired from B hit the plane } \cap \text{ Exactly one of them hit the plane})
\]

\[
= P(\text{Exactly one of them hit the plane})
\]
\[
\begin{array}{c}
P(\text{Shell from only 8 hit the plane}) \\
P(\text{Exactly one of them hit the plane}) \\
\begin{align*}
0.14 &= \frac{7}{0.38} = \frac{19}{19} \\
0.14 &= \frac{7}{0.38} = \frac{19}{19}
\end{align*}
\end{array}
\]