

Class – XI

Subject: Computer Science

UNIT- 1 CBSE

Boolean Algebra

cbseacademic.nic.in/web_material/doc/cs/2_Computer_Science_Python_ClassXII.pdf

Unit – 4 Introduction to Boolean Algebra

Chapter -1 and 3

The notion of variable and concept of L-value and R-value

Reference :

• NCERT, Computer Science Textbook for Class XI, Chapter 5: Getting Started with Python

• CBSE Text Book, Computer Science, Class XI, Unit -3, Chapter-1: Getting Started

Variable

Variable, in Python, is an object that is used to store values viz. numeric (e.g., 345), string (e.g.,

‘Python’) or any combination of alphanumeric characters (e.g., CD67). In Python, we can use an

assignment statement to assign specific value to a variable.

Example :

Here, 100 is assigned to newly created variable count.

Write a Python Program to illustrate the use of variables in calculating simple interest.

In Python, every object has

• An Identity - can be known using id(object)

• A Type - can be known using type(object)

• A Value

Identity of the object:

It is the object's address in memory and does not change once it has been created.

Type:

It tells the data type of the object.

Value:

The value assigned to the object. To bind a value to a variable, we use the assignment operator

(=).

A variable name:

• Allowed characters : a-z, A-Z, 0-9 and underscore (_)

• should begin with an alphabet or underscore.

• should not be a keyword.

It is a good practice to follow the following naming conventions:

• A variable name should be meaningful and short.

• Generally, they are written in lower case letters.

Write a Python Program to illustrate the use of variables in calculating simple interest and

print Identity, Type and Value of each variable used.

L-value and R-value concept

In any assignment statement, the assignable object (e.g. variable) must appear on the left side

of the assignment operator else python will report an error. In this case, the assignable object is

called L-value.

The value to be assigned (or any expression producing value) must appear on the right side of the

assignment operator. In this case, the value (or expression resulting in value) is called R-value.

CBSE – Sorting

cbseacademic.nic.in/web_material/doc/cs/2_Computer_Science_Python_ClassXII.pdf

Unit-2: Advanced Programing with Python

Page number 99 t0 102

Class – XII

Subject: Computer Science

Changed portion from NCERT

Functions in continuation to NCERT chapter – 7 (Class – 11)

Passing List, Tuple & Dictionary to a Function, Positional Parameter

Passing a List to a Function

Like we pass numbers and strings to a function, similarly, we can pass List to a function. The

following example illustrates the same.

Write a program to input a word having Upper Case Alphabets only. Store each letter in a list and pass

this list to a function that replaces each letter of the word by a letter three places down the alphabet

i.e. each 'A' will be replaced by 'D', each 'B' will be replaced by 'E' and similarly, each 'Z' will be

replaced by 'C'.

Passing a Tuple to a Function

The following program illustrates how to pass a tuple to a function.

Write a program to input a word having Upper Case Alphabet characters only. Store each letter in a

tuple and pass this tuple to a function that replaces each letter of the word by a letter three places

down the alphabet i.e. each 'A' will be replaced by 'D', each 'B' will be replaced by 'E' and similarly,

each 'Z' will be replaced by 'C'.

Passing a Dictionary to a Function

The following program illustrates how to pass a dictionary to a function.

Write a program to input a word. Count the occurrence of each vowel in the word and store it in a

dictionary as key-value pair. Pass this dictionary to a function and print the occurrence of each vowel.

Argument (Reference: CBSE Text Book, Computer Science, Class XI, Unit-3, Chapter - 2 : Functions)

Arguments are the value(s) provided in function call/invoke statement.

Default Parameter

When, in a function definition, one or more parameters are provided with a default value. The

default value assigned to the parameter should be constant only. Only those parameters which are at the

end of the list can be given a default value.

We cannot have a parameter on left with a default value, without assigning default values to parameters

lying on its right side.

Positional Argument

The arguments which get assigned to parameter according to their position. An argument list must have

any positional arguments followed by any keyword’s arguments.

Note: Refer Keyword argument (CBSE TextBook, Computer Science, Class XI, Unit-3, Chapter - 2: Functions)

for better understanding.

Example:

10, 9 and 8 are positional arguments in the following calls:

area_Triangle(10,9,8)

Recursion in Python

What is Recursion?

Recursion actually refers to the process of a function calling itself. The function which calls

itself is called a recursive function.

Recursion works by breaking a larger problem into smaller ones. It is useful when we need to

perform the same operation on a variable a number of times.

Let us take an example to explain Recursion.

Problem : To find the factorial of a given number . say 4, we shall use recursion.

 4!= 4 x 3 x 2 x 1=24

Code using a recursive function:

def fact(n)

if n = = 1:

 return 1

else

 return n * fact(n-1)

print (fact(4))

Now let us visualize this process:

The first call transfers control to the function fact() with value 4. Then the function is called

again with the value 3 and so on till we reach a base case or a call that returns 1 in this case.

This is the recursive function call. Here the function

fact calls itself with n-1 as the argument, which again

calls itself till the function returns 1.

So here, the function fact() is called 4 times and each time the call is nested within the

previous call. The evaluation of last call is returned to the second last and so on.

Recursion makes the code look neat and is simpler to write in terms of logic. But it

requires more memory due to the nested function calls.

Looping vs Recursion

We can also use a function with a loop to find the factorial of a number. The code is a bit

more complex and the control remains within the function as the loop iterates.

Here control is transferred to the function when it is called with the value 4.

Within the function the orange dotted lines indicate iteration. Once the loop

breaks the return statement is executed thus control comes out to the call and the

factorial is printed.

Advantages of recursion

 1. The code requires less lines.

 2. Breaking large complex programs becomes easier.

 3. Makes code look more modular.

Disadvantages

 1. The program may never terminate if not used properly or too much nesting is there.

 2. More difficult to understand than loops.

Programs based on recursion:

1. Find the sum of a Fibonacci series upto n terms.

def fibonacci_sum(n):

 if n == 1 or n == 2:

 return 1

 else:

 return (fibonacci_sum(n - 1) + (fibonacci_sum(n - 2)))

print(fibonacci_sum(6))

The function fibonacci () is invoked with n as 6 here. The return statement nests two

recursive function calls . Let us see how this works through visualizing the calls

fibonacci(6)

= fibonacci(5) + fibonacci(4)

= fibonacci(4) + fibonacci(3) + fibonacci(3) +fibonacci(2)

= fibonacci(3) + fibonacci(2) + fibonacci(2) +fibonacci(1)+fibonacci(2)+fibonacci(1)+1

=fibonacci(2)+fibonacci(1)+1+1+1+1+1+1

=1+1+6

=8

2. Finding sum of a list of numbers

def sum(Num):

 if len(Num) == 1:

 return Num[0]

 else:

 return Num[0] + sum(Num[1:])

print(sum([2, 6, 7, 18, 20]))

In the above program, sum() is a recursive function with the recursive call within

the else part of the if construct.

3. Calculate a number raised to a power using recursion.

def power(x,y):
 if y==0:
 return 1
 elif y==1:
 return x
 elif x==0:
 return 0

 else:
 return x*power(x,y-1)

 print(power(4,2))

 In this program the function power is called recursively when the value of x is more than 0.

4. Binary Search using recursion.

 def binary_search(a, first, last, no):

 mid = int((first+last)/2)

 if no>a[mid]:

 binary_search(a, mid, last, no)

 elif no<a[mid]:

 binary_search(a, first, mid, no)

 elif no==a[mid]:

 print("Number found at", mid+1)

 else:

 print("Number is not there in the array")

list=[2,4,5,7]

first=0

last=len(list)

no=7

binary_search(list,first,last,no)

Idea of Efficiency

In computer science, the efficiency of a program is measured in terms of the resources it consumes. Two

of the most critical resources, which a program consumes are time and memory. For better efficiency, a

program execution should consume less resources. In the modern times, we consider the idea of efficiency

in terms of time only. So, in simple terms, we can say that an efficient program should take less time to

execute.

In 1843, Ada Lovelace (The first computer programmer) emphasised the importance of efficiency

concerning time when applying Charles Babbage's mechanical analytical engine.

We have to calculate its execution time to measure the efficiency of code. Execution time of code may

vary from computer to computer depending upon the configuration of the system (i.e., Processor speed,

RAM, Cache, OS, Compiler/Interpreter version etc.). We can calculate the number of fundamental

operations in a code's execution. Assuming that each major operation takes one unit of time to execute,

if a code performs 't' number of fundamental operations, then its execution time becomes 't' units.

In the world of computing, we express these complexities with capital O, also called Big O notation. Note

that over here "O" means order, i.e. "order of complexity".

So, we can say that Big O notation is used to measure the complexity of any algorithm or a code. Let us

consider the following N number of statements expected to be executed in code:

Statement 1

Statement 2

...

Statement N

Efficient Program

Inefficient Program

Execution

Time

Then the total time can be calculated by adding the time consumed by each of the statement:

Total Time = Time(Statement1)+Time(Statement2)+ … +Time (StatementN)

Big O Runtime Examples

O(1) Constant Runtime A=1 #Statement 1

B=2 #Statement 2

C=A+B #Statement 3

print(C) #Statement 4

#Complexity will be 1 + 1 + 1 + 1 i.e.O(1)

O(N) Linear Runtime for i in range(N):

 print(i)

#Complexity will be N*1 i.e. O(N)

O(N2) Quadratic Runtime for i in range(N):

 for j in range(N):

 print(j)

#Complexity will be N * (N*1) i.e. O(N2)

In case, we have the following codes:

Example 1:

N=int(input('N'))

for i in range(N):

 print(i)

for i in range(N):

 for j in range(N):

 print(j)

Complexity = 1 + N*1 + N*(1*N)

= 1+ N +N2

So, the complexity of the above code in terms of Big O notation will be O(N2)

Example 2:

N=int(input("N:"))

for i in range(1, N+1):

 p=p*i

print(p)

Complexity = 1 + N*1 + 1

= N

So, the complexity of the above code in terms of Big O notation will be O(N)

[Considering only the dominant term]

Example 3:

N=int(input("N:"))

if(N<0):

 return

for i in range(1, N+1):

 p1=p1*i

M=int(input("M:"))

for i in range(1, M+1):

 p2=p2*i;

print(p1 + p2)

Complexity = 1+ 1 + N*1 + M*1 +1

= N+M

So, the complexity of the above code in terms of Big O notation will be O(N+M)

[Considering only the dominant terms]

Example 4:

N=int(input("N:"))

sum=0;

for j in range(1, N+1):

 for i in range(1, N+1):

p=p*i

 sum+=p

print(sum)

Complexity = 1 + 1 + N* (N*1) + 1

= 1 + 1+ N2 + 1

So, the complexity of the above code in terms of Big O notation will be O(N2)

In simple ways, we can also find the execution time required by a code

(Using time module to check start and end time of programs for executing the code)

Example 1 a: Code to check if a given number is prime or not

import time

Start = time.time()

def PrimeCheck(N):

 if N > 1: # Prime numbers are always greater than 1.

 for i in range(2, N//2+1):

 if (N % i) == 0:

 print(N," is not Prime Number")

 break

 else:

 print (N," Prime Number")

 else:

 print(num," is neither prime nor composite")

Num = int(input("Enter a Natural Number: "))

PrimeCheck(Num)

End = time.time()

print("Total Execution Time:",End-Start)

Output :

Enter a number : 627

627 is not Prime Number

Total Execution Time: 2.990596055984497

 (Note: The time can vary on different systems)

Example 1 b: Alternative code for Prime Number

import math

import time

Start = time.time()

def PrimeCheck(N):

 if N > 1:

 for i in range(2,int(math.sqrt(N))+1):

 if (N % i) == 0:

 print(N," is not a prime number")

 break

 else:

 print(N," is a prime number")

 else:

 print(N," is neither Prime nor Composite")

Num = int(input("Enter a Natural Number: "))

PrimeCheck(Num)

End = time.time()

print("Total Execution Time:",End-Start)

Output:

Enter a Natural Number: 627

627 is not a prime number

Total Execution Time: 1.9446911811828613

(Note: The time can vary on different systems)

Example 2 a: To find the sum of N Natural Numbers.

import time

Start = time.time()

def Sum_N(N):

 S=0

 for i in range(1, N+1):

 S+=i

 print(S)

Num = int(input("Enter a Natural Number: "))

Sum_N(Num)

End = time.time()

print("Total Execution Time:",End-Start)

Output:

Enter a Natural Number: 100000

50005000

Total Execution Time: 78.48986077308655

(Note: The time can vary on different systems)

Example 2 b: Alternative code for finding the sum of N natural number

import time

Start = time.time()

def Sum_N(N):

 print(N*(N+1)/2)

Num = int(input("Enter a Natural Number: "))

Sum_N(Num)

End = time.time()

print("Total Execution Time:",End-Start)

Output :

Enter a Natural Number: 100000

5000050000.0

Total Execution Time: 4.043231248855591

(Note: The time can vary on different systems)

Binary File Handling

1. Adding a Record at the end of the file.

import pickle

'''

Function 1: A function AddRecord() to add new records at the end of the binary

file "student" using list. The list should consist of Student No, Student Name

and Marks of the student.

'''

def AddRecords():

 Student=[]

 while True:

 Stno =int(input("Student No:"))

 Sname=input("Name")

 Marks=int(input("Marks"))

 S=[Stno,Sname,Marks]

 Student.append(S)

 More=input("More(Y/N)?")

 if More=='N':

 break

 F=open("students","ab")

 pickle.dump(Student,F)

 F.close()

2. Updating the record in in Binary file.

'''

A function Update () to update the record in the binary file "students", which

consists of student number, student name and marks after searching for a

student on the basis of student number entered by the user.

'''

def Update():

 F =open("students","rb+")

 Recs=pickle.load(F)

 Found=0

 SN=int(input("Student No:"))

 for Rec in Recs:

 sn=Rec[0]

 if SN==sn:

 print("Record found...")

 print("Existing Name:",Rec[1])

 Rec[1]=input("New Name")

 Rec[2]=int(input("New Marks"))

 Found=1

 break

 if Found:

 F.seek(0)

 pickle.dump(Rec,F)

 print("Record updated")

 F.close()

3. Displaying all the records in Binary File.

'''

Function 3: A function Display() to display the content of records from a

binary file "students", which consists of student number, student name and

marks.

'''

def Display():

 F =open("students","rb+")

 Recs=pickle.load(F)

 for Rec in Recs:

 print(Rec[0],Rec[1],Rec[2])

 F.close()

while True:

 CH=input("A:Add U:Update D:Display Q:Quit ")

 if CH=='A':

 AddRecords()

 elif CH=='U':

 Update()

 elif CH=='D':

 Display()

 else:

 Break

Sample Output:

A:Add U:Update D:Display Q:Quit A

Student No:12

NameArun Jha

Marks98

More(Y/N)?Y

Student No:15

NameTaran Taran

Marks76

More(Y/N)?Y

Student No:19

NameRiya Sen

Marks87

More(Y/N)?N

A:Add U:Update D:Display Q:Quit D

12 Arun Jha 98

15 Taran Taran 76

19 Riya Sen 87

A:Add U:Update D:Display Q:Quit U

Student No:15

Record found...

Existing Name: Taran Taran

New NameTaran Singh

New Marks92

Record updated

A:Add U:Update D:Display Q:Quit Q

CSV File handling

CSV (Comma Separated Values) file format is the most common format for tabulated data to be used in

any spreadsheet tool (Calc, Google Sheets, Excel) and any database. A CSV file stores tabular data

(numbers and text) in plain text. Each line of the file is a data record. Each record consists of one or more

fields, separated by commas. The name CSV comes from the use of commas as a field separator for this

file format.

The following are some of the examples of CSV files without header:

CSV File content with 3 Fields/Columns

1,Simran,80

2,Rishabh,99

CSV File content with 4 Fields/Columns with comma as separator:
12,"Simran",3400,"34,ABC Colony, DL"

14,"Rishabh",4300,"R-90,XYZ Nagar, DL"

The following is an example of CSV file with header:

CSV File content with 3 Fields/Columns
Rno,Name,Percent

1,Simran,80

2,Rishabh,99

3,Ajit,88

In Python, we use (import) the csv module to perform read and write operations on csv files. The csv

module in Python’s standard library presents classes and methods to perform read/write operations on

CSV files.

We will make use of the writer () in a csv module which will return a writer object of the csv module to

write the content of a sequence onto the file and the reader object to read the content from a csv file

into a sequence.

As we have already seen in case of text and binary file handling, open() function is required to connect to

the external file and close() function to disassociate with the external file. We will make use of the same

functions for csv files too. Here also with the open function, we will use “w” (write) as the second

parameter to write the content in a new file, "r" (read) as the second parameter to read the content from

an existing file and “a” (append) as the second parameter to add new content below the existing content.

Open a CSV File for writing content into a new file

It will Overwrite the content, if content already exists

 Csvfile=open('student.csv','w', newline='')

Open a CSV File for writing content at the bottom of an existing file

It will create a new file, if file does not exist

 Csvfile=open('student.csv','a', newline='')

Open a CSV File for reading content from an existing file

It will raise an exception FileNotFoundError, if file does not exist

 Csvfile=open('student.csv','r')

The writer class of the module csv provides two methods for writing to the CSV file. They are

writerow() and writerows(). This class returns a writer object which is responsible for converting the

user’s data into a delimited string. A csvfile object should be opened with newline = ’’ otherwise

newline characters inside the quoted fields will not be interpreted correctly.

writer()

This function in the csv module returns a writer object that converts data into a delimited string and

stores it in a file object. The function needs a file object with write permission as a parameter. Every

row written in the file issues a newline character. To prevent additional space between lines, the

newline parameter is set to ‘’.

CSV.writer class provides two methods for writing to the CSV file. They are writerow() and writerows()

function.

writerow()

This function writes items in an iterable (list, tuple or string), separating them by comma character.

Syntax:

writerow(fields)

writerows()

This function takes a list of iterables as a parameter and writes each item as a comma separated line

of items in the file.

Syntax:

writerows(rows)

import csv

#--#

To create a CSV File by writing individual lines

#--#

def CreateCSV1():

 Csvfile=open('student.csv','w', newline='') # Open CSV File

 Csvobj =csv.writer(Csvfile) # CSV Object for writing

 while True:

 Rno =int(input("Rollno:"))

 Name =input("Name:")

 Marks=float(input("Marks:"))

 Line=[Rno,Name,Marks]

 Csvobj.writerow(Line) # Writing a line in CSV file

 Ch=input("More(Y/N)?")

 if Ch=='N':

 break

 Csvfile.close() # Closing a CSV File

The writer function returns a writer object that converts the data into a

delimited string and stores it in a file object. Every row written in the file

issues a new line character. To avoid additional lines between rows, the newline

is set to ’’.

#--#

To create a CSV File by writing all lines in one go

#--#

def CreateCSV2():

 Csvfile=open('student.csv','w', newline='')# Open CSV File

 Csvobj =csv.writer(Csvfile) # CSV Object for writing

 Lines=[]

 while True:

 Rno=int(input("Rollno:"))

 Name=input("Name:")

 Marks=float(input("Marks:"))

 Lines.append([Rno,Name,Marks])

 Ch=input("More(Y/N)?")

 if Ch=='N':

 break

 Csvobj.writerows(Lines) # Writing all lines in CSV file

 Csvfile.close() # Closing a CSV File

#--#

To read and show the content of a CSV File

#--#

def ShowAll():

 Csvfile=open('student.csv','r', newline='')# Opening CSV File for reading

 Csvobj=csv.reader(Csvfile) # Reading the CSV content in object

 for Line in Csvobj: # Extracting line by line content

 print(Line)

 Csvfile.close() # Closing a CSV File

#--#

while True:

 Option=input("1:CreateCSV 2:CreateCSVAll 3:ShowCSV 4:Quit ")

 if Option=="1":

 CreateCSV1()

 elif Option=="2":

 CreateCSV2()

 elif Option=="3":

 ShowAll()

 else:

 break

Content of student.csv when viewed in notepad and Spreadsheet tool:

The open function (in any of the modes, namely ’w’,’r’,or ’a’) in absence of the

newline parameter, by default appends ‘\r\n’ (return key followed by newline

character.

In case the newline is not present in the open function, the newline character is taken as ‘\r\n’. This

is indicated by the presence of blank lines in the CSV file or the output which is displayed.

Here is the program where open function is used without the newline argument:

#--#

To create a CSV File by writing individual lines

#--#

def CreateCSV1():

 Csvfile=open('student.csv','w') # Open CSV File

 Csvobj =csv.writer(Csvfile) # CSV Object for writing

 while True:

 Rno =int(input("Rollno:"))

 Name =input("Name:")

 Marks=float(input("Marks:"))

 Line=[Rno,Name,Marks]

 Csvobj.writerow(Line) # Writing a line in CSV file

 Ch=input("More(Y/N)?")

 if Ch=='N':

 break

 Csvfile.close() # Closing a CSV File

#--#

To create a CSV File by writing all lines in one go

#--#

def CreateCSV2():

 Csvfile=open('student.csv','w') # Open CSV File

 Csvobj =csv.writer(Csvfile) # CSV Object for writing

 Lines=[]

 while True:

 Rno=int(input("Rollno:"))

 Name=input("Name:")

 Marks=float(input("Marks:"))

 Lines.append([Rno,Name,Marks])

 Ch=input("More(Y/N)?")

 if Ch=='N':

 break

 Csvobj.writerows(Lines) # Writing all lines in CSV file

 Csvfile.close() # Closing a CSV File

#--#

To read and show the content of a CSV File

#--#

def ShowAll():

 Csvfile=open('student.csv','r')# Opening CSV File for reading

 Csvobj=csv.reader(Csvfile) # Reading the CSV content in object

 for Line in Csvobj: # Extracting line by line content

 print(Line)

 Csvfile.close() # Closing a CSV File

#--#

while True:

 Option=input("1:CreateCSV 2:CreateCSVAll 3:ShowCSV 4:Quit ")

 if Option=="1":

 CreateCSV1()

 elif Option=="2":

 CreateCSV2()

 elif Option=="3":

 ShowAll()

 else:

 break

Content of student.csv when viewed in notepad and Spreadsheet tool:

Another alternative using with open as:
import csv

#--#

To create a CSV File by writing individual lines

#--#

def CreateCSV():

 with open('emp.csv','w', newline='') as f: # Open CSV File

 Csvobj =csv.writer(f) # CSV Object for writing

 while True:

 Eno =int(input("Eno:"))

 Name =input("Name:")

 Pay=float(input("Pay:"))

 Line=[Eno,Name,Pay]

 Csvobj.writerow(Line) # Writing a line in CSV file

 Ch=input("More(Y/N)?")

 if Ch=='N':

 break

 # f.close()is not required

#--#

To add new content in a CSV File

#--#

def AddAtEndCSV():

 with open('emp.csv','a', newline='') as f: # Open CSV File to append

 Csvobj =csv.writer(f) # CSV Object for writing

 while True:

 Eno =int(input("Eno:"))

 Name =input("Name:")

 Pay=float(input("Pay:"))

 Line=[Eno,Name,Pay]

 Csvobj.writerow(Line) # Writing a line in CSV file

 Ch=input("More(Y/N)?")

 if Ch=='N':

 break. # f.close()is not required

#--#

To read and show the content of a CSV File

#--#

def ShowAll():

 try:

 with open("student.csv", newline='') as f:

 reader = csv.reader(f)

 for row in reader:

 print(row)

 except FileNotFoundError:

 print("File not found!")

#--#

while True:

 Option=input("1:CreateCSV 2:AddAtEnd 3:ShowCSV 4:Quit ")

 if Option=="1":

 CreateCSV()

 elif Option=="2":

 AddAtEndCSV()

 elif Option=="3":

 ShowAll()

 else:

break

Creating and importing python library

Important: To create a python Library make sure you are using no other versions of python and

pip is only installed on a default path.

Module: A Module is a file containing python definitions, functions, variables, classes and

statements with .py extension.

[Creation module is covered in Class XI Chapter - 7 Functions in NCERT]

Library: A Library or a Package is a collection of various Modules.

Steps to create a package:

Step No Step Description

1 Create a new folder with a name you want to give to a package along

with a sub folder in it.

2 Create modules and save within the sub folder. [Note that the modules

are the executed files]

3 Create an empty file with name as __init__.py within the same

folder.

Note: The filename init is preceded and succeeded by two underscores

4 Store the package content within the file __init__.py via importing all

the modules created.

Note: The Python interpreter recognizes a folder as a package, if it

contains __init__.py file

5 Create a file setup.py in the main folder.

6 Install the Package via using PIP command.

Example:

To create a package Calci containing two modules Simple.py and Arith.py

We have created the Library named “Calci”. To create the Library follow the steps and see the

structure of the folders and files.

(Where Calci is a folder containing three files: Simple.py, Arith.py and __init__.py. The file

__init__.py contains the contents of the files Simple.py and Arith.py, which can be done by simply

importing these files.)

Step 1: We have created the folder calci and under that the folder "nav" which is the actual name

of the library.

Step -2 Create the file .py name “Simple1.py” in the folder nav.

Step -3 Create the file Arith.py in the folder nav.

Step -4 Create the file __init__.py file again under the folder nav.

Step -5 Create the file Setup.py under the folder calci.

from setuptools import setup #Predefined library to create Package
setup(name='nav', #name="nav" is the name of the package
version='0.1', #Version of the package
description='CBSE Package', #Description name of organisation
url='#', #URL can be empty for local package
author='Naveen Gupta', #Name of the person who has created the

package
author_email='gupta.naveen1@gmail.com',
license='CBSE',
packages=['nav'], #Name of the package
zip_safe=False)

Step 6. To install the package open the command prompt, write "Pip install nav".

If you have already set the path of the python or pip then only this command will work. To

run this command make sure that you are in the same folder where your pip is installed.

Pip is a package management system used to install and manage python software packages, such

as those found in the Python Package Index or in simple words we can say it is a small installer file

which helps us to install the python libraries.

Your package is installed and ready for the use.

To check whether your Library is properly installed or not. Write the following commands:

import nav

dir(nav) #It will display the name of all the user-defined and system modules

along with functions

help(“nav”) #It will display the content of the package.

How to use the package which you have created:

import nav

nav..Interest(990,5,3) #Calling the Inte

Difference between module and package.

The main difference between a module and a package is that package is a collection of modules

and has an __init__.py file

Importing library

We can import the libraries by the following ways:

import <package name> #importing the complete package

from <Package name> import <Module Name> /<Function Name>

#importing the particular module or function from the package.

>>> import random #imported the complete library

>>> random.random()

0.4651077285903422

>>> from random import randint #only randint function() will be imported

>>> randint(10,50)

28

Interface python with SQL Database

A database is an organized collection of data, stored and accessed electronically from a computer system. The

database management system (DBMS) is the software that interacts with end-users, applications, and the database

itself to capture and analyze the data.

Data is organized into rows, columns and stored in tables. The rows (tuples) are indexed to make it easier to find

relevant information.

Front End in database refers to the user interface or application that enables accessing tabular, structured or raw data

stored within it. The front end holds the entire application programming utility for data, requests input and sends it to

the database back-end. Form or any user interface designed in any programming language is Front End. (Python is

used as front end). Data given by the database as a response is known as the Back-End database. (We will be using

Python as Front-End and MySQL as Back-End)

The Python standard for database interfaces is the Python DB-API.

Following are the reason to choose python programming

• Programming more efficient and faster compared to other languages.

• Portability of python programs.

• Support platform independent program development.

• Python supports SQL cursors.

• Python itself take care of open and close of connections.

• Python supports relational database systems.

• Porting of data from one dbms to others is easily possible as it support large range of APIs for various

databases.

Steps for creating Database Connectivity Application

1. Start Python

2. Import Packages required for establishing connectivity

3. Create Database

4. Open and establish a connection to the database

5. Create a cursor object or instance

6. Execute a query

7. Extract data from the result set

8. Clean up the environment

Establish a connection

For database interface/database programming, a connection must be established. Before establishing

connection there must be MySQL installed on the system (Link: https://downloads.mysql.com/archives/community/)

and a database and table are already created.

Installation of mysql.connector

We can install mysql-connector using the following command

We can also install pymysql, to work with MySQL.

 pin install pymysql

We can use any connector to just one word needs to change in program rest of the code always same.

In the following way, we can establish a connection with the MySQL database through mysql.connector.

Alternatively we can write the following statement if we are using mysqldb

importMySQLdb

mydb = MySQLdb.connect("localhost",“root",“root",“school")

print(mydb)

Another way to connect using mymysql

import pymysql

mydb = pymysql.connect("localhost",“root",“root",“school")

print(mydb)

In all the ways, we are specifying host, user, password and database name as arguments.

the database is an optional argument if we want to create a database through programming later on.

Cursor object :

The MySQLCursor class instantiates objects that can execute operations such as MySQL statements. Cursor objects

interact with the MySQL server using a MySQLConnection object.

To create a cursor object and use it:

The above code will create a database school and display all the databases stored on your computer.

To create a table at run time

To create a table, we have used the query

CREATE TABLE table_name(attributes type……)

Now, we have to pass the CREATE TABLE query in execute() method of cursor object. But before table creation, we

must open the database. Here we are opening the database school(through connect() method) before student table

creation.

On successful execution of the above program, a table named student with three attributes roll no, name, age will

be created in the database school.

To insert data into the table:

To insert data into a table, we have used the query

 INSERT INTO table_name [field_list] VALUES (respective data)

The following code will demonstrate how to insert data into a table during run time

To change the structure of the table :

To add a new attribute, we have used the query

ALTER TABLE table_name ADD (attribute type……)

The following code will demonstrate adding a new attribute to the table at run time

Above program will add a new attribute marks in the table student and will display the structure of the table

To fetch all records of a table:

To display the values stored in a table we have used the following query:

 SELECT <field_list> FROM table_name [WHERE condition]

The following code will display data from a table during runtime.

MySQLCursor.fetchall() Method

This method fetches all rows of a query result set and returns a list of tuples. If no more rows are available,

it returns an empty list.

To fetch one record of a table at run time:

MySQLCursor.fetchone() method

This method retrieves the next row of a query result set and returns a single sequence, or None if no more rows are

available. By default, the returned tuple consists of data returned by the MySQL server, converted to Python objects.

MySQLCursor.fetchmany() method

rows = cursor.fetchmany(size=1)

This method fetches the next set of rows of a query result and returns a list of tuples. If no more rows are available,

it returns an empty list.

To delete a record of a table at run time:

To delete tuples from a table, we have used the query

 DELETE FROM table_name [WHERE condition]

In the above program delete query will delete a record with rollno=1. commit()method is necessary to call for a

database transaction.

To update the record of a table at run time:

 We have used the following query to update a record or more records.

 UPDATE table_name SET attribute = value [WHERE condition]

The following code will edit the marks scored by roll no 2 to 99.

Table Data (Before)

Table Data (After)

 (Students are advised to develop a menu-driven program using the above concepts for better understating of

python MySQL database interface. This concept can be used in Project work to be completed by the students.)

To Manage Database Transaction:

Python MySQL Connector provides the following method to manage database transactions.

commit MySQLConnection.commit() methodsends aCOMMIT statement to the MySQL server,
committing the current transaction.

rollback MySQLConnection.rollback undoes the changes made by the current transaction.

autoCommit MySQLConnection.autocommit value can be assigned as True or False to enable or disable the
auto-commit feature of MySQL. By default its value is False.

To search records of a table at run time:

Table Data

The following code explains the use of a select query for searching a specific record from a table.

The above code will take a name from the user and that name is searched in the table student using the SELECT

query, the result will be shown with the help of my cursor collection.

Practice Exercise:
Consider scenario of a school where each student is supposed to enroll for two lab Courses. The structure of the

Student and Lab table is as shown below.

Note: Lab1_Code & Lab2_Code (Student Table) are Foreign Key referencing Lab_code (Lab table).

STUDENT

Roll_No Name Class Session Gender Address Lab1_Code Lab2_Code

1 Ajay 12 2020-21 M Delhi PHY CHE

2 Ramesh 12 2020-21 M Delhi PYT BIO

3 Sumedha 12 2020-21 F Delhi CHE PYT

4 Suresh 12 2020-21 M Ghaziabad BIO PHY

5 Vijay 12 2020-21 M Noida PYT MAT

LAB

Lab_Code Lab_Name Instructor_First_Name

BIO BIOLOGY SANTOSH

CHE CHEMISTRY RAJAT

MAT MATHS SUDHIR

PHY PHYSICS LALIT

PYT PYTHON SUNIL

Perform the following operations using Python Program

1. Create a database namely 'School '.

2. Create the 'Student ' and 'Lab' Table.

3. Insert data, as shown above, in both the tables.

4. Select Roll Number, Student Name, Lab Name and Instructor Name where Lab Code is 'PYT'.

5. Select Name, Gender, Instructor Name for Students residing in Delhi where Lab Code is 'PYT'.

6. Update Instructor Name to ‘Deepak’ for Lab Code 'Mat'.

UNIT- II : COMPUTER NETWORK :

REFERENCE:

CBSE : A TEXT BOOK OF INFORMATICS PRACTICES- CLASS XII

Chapter 1: Computer Networking:

The link below provides the material for Unit –II (Evolution of Networking, Data communication

technologies, Network devices, Network topologies and types, Network Protocol, Mobile

Telecommunication Technologies, Network Security Concepts

cbseacademic.nic.in/supportmaterial.html

informaticspracticesbookclassxiiforweb_2011 (1).zip - ZIP archive, unpacked size

16,929,917 bytes

Introduction to Web Services:

Chapter 7 : Web Applications: Page no. 192, 193, and 225 , 230 and 231

