CBSE | DEPARTMENT OF SKILL EDUCATION

APPLIED MATHEMATICS (840)

Blue-print for Sample Question Paper for Class XII (Session 2020-2021)

Max. Time: 3 Hours

Max. Marks: 70

	NAME OF THE UNIT	OBJECTIVE TYPE QUESTIONS	SHORT ANS. TYPE QUES I	SHORT ANS. TYPE QUES II	DESCRIPTIVE/ LONG ANS. TYPE QUESTIONS	TOTAL
NO.		1 MARK EACH	2 MARKS EACH	3 MARKS EACH	5 MARKS EACH	QUESTIONS
1.	Fundamentals of Calculus	9	1	1	1	12
2.	Algebra	6	1		1	8
3.	Logical Reasoning	7	1	1		9
4.	Commercial Mathematics	7	2		1	10
5.	Probability	6	1	1	1	9
6.	Two-Dimensional Geometry	5				5
7.	Linear Programming	6	1	1	1	9
8.	Analysis of Time- Based Data	3	2			5
TOTAL QUESTIONS		49	9	4	5	
	NO. OF QUESTIONS TO BE ANSWERED	Any 35	Any 7	Any 2	Any 3	
TOTAL MARKS		1 x 35 = 35	2 x 7 = 14	3 x 2 = 6	5 x 3= 15	70

CBSE | DEPARTMENT OF SKILL EDUCATION

APPLIED MATHEMATICS (840)

Sample Question Paper for Class XII (Session 2020-2021)

Max. Time: 3 Hours

Max. Marks: 70

General Instructions:

- **1.** Please read the instructions carefully.
- 2. This Question Paper consists of 25 questions in two sections Section A & Section B.
- 3. Section A has Objective type questions whereas Section B contains Subjective type questions.
- 4. Out of the given (7 + 18 =) 25 questions, a candidate has to answer (7 + 12 =) 19 questions in the allotted (maximum) time of 3 hours.
- 5. All questions of a particular section must be attempted in the correct order.

6. SECTION A - OBJECTIVE TYPE QUESTIONS (35 MARKS):

- i. This section has 07 questions.
- ii. There is no negative marking.
- iii. Do as per the instructions given.
- iv. Marks allotted are mentioned against each question/part.

7. SECTION B – SUBJECTIVE TYPE QUESTIONS (35 MARKS):

- i. This section contains 18 questions.
- ii. A candidate has to do 12 questions.
- iii. Do as per the instructions given.
- iv. Marks allotted are mentioned against each question/part.

SECTION A: OBJECTIVE TYPE QUESTIONS

Q. 1	Answer any 5 out of the given 7 questions(1 x 5 = 5 marks)						
i.	If $f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2 \\ k, & x = 2 \end{cases}$ is continuous at $x = 2$, then $k = 1$	1					
	(a) 2 (b) 4 (c) 6 (d) 3						
ii.	The derivative of a^x is	1					
	(a) $a^x \log a$ (b) a^x (c) $\frac{a^x}{\log a}$ (d) None of these						
iii.	The matrix $A = \begin{bmatrix} 0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0 \end{bmatrix}$ is a	1					
	(a) Square matrix (b) Diagonal matrix (c) Unit matrix (d) None of these						
iv.	The decimal equivalent of the binary 11010 is	1					
	(a) $(29)_{10}$ (b) $(36)_{10}$ (c) $(26)_{10}$ (d) $(19)_{10}$						
v.	If Rs. 100 share is quoted at 75 premium, then its market value is	1					
	(a) Rs. 100 (b) Rs.175 (c) Rs. 75 (d) Rs. 125						
vi.	Find the investment in buying 450 shares of Rs. 100 each at 5% discount	1					
	(a) Rs. 47,250 (b) Rs.50,000 (c) Rs. 42,750 (d) Rs. 45,000						
vii.	The total revenue received from the sale of x units of a product is given by $R(x) =$	1					
	$3x^2 + 36x + 5$. The marginal revenue, when $x = 15$, is						
	(a) 116 (b) 96 (c) 90 (d) 126						

Q. 2	Answer any 5 out of the given 7 questions (1 x 5 = 5 marks)								
i.	If P(A) = 0.6, P(A)	B) = 0.7, A and B are	independent events,	, then P(B) is	1				
	$(a)\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{1}{4}$	(d) None of these					
ii.	The equation of th	e lines parallel to $x - $	axis and passing tho	ugh (–2,3) is	1				
	(a) $x = -2$	(b) $x = 3$	(c) $y = -2$	(d) $y = 3$					
iii.	The conditions $x \ge 0$, $y \ge 0$ are called								
	(a) Restrictions only	(b) Non-negative restrictions	(c) Negative restrictions	(d) None of these					
iv.	Index Numbers are	e expressed in			1				
	(a) Ratios	(b) Squares	(c) Percentages	(d) None of these					
	Page 3 of 9								

v.	$\lim_{x\to 0}\frac{\sqrt{1+x}-1}{x}$	$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x}$ is equal to					
	(a) 0	(b) 1	(c) $\frac{1}{2}$	(d) $\sqrt{2}$			
vi.	If $\lim_{x \to 2} \frac{x^{n} - 2^{n}}{x - 2} = 32$, then the value of <i>n</i> is						
	(a) 1	(b) 2	(c) 3	(d) 4			
vii.	$IFy = xe^y$, th	en $\frac{dy}{dx}$ is			1		
	(a) $\frac{y}{1-y}$	(b) $\frac{y}{x(1-y)}$	(c) $\frac{x}{1-y}$	(d) $\frac{x}{y(1-y)}$			

Q. 3	Answer any 5 o	ut of the given 7 quest	ions (1 x 5 = 5 mark	s)				
i.	$ \text{lf } f(x) = x^2 + $	5x + 2, then $f'(3)$ is			1			
	(a) 11	(b) 12	(c) 10	(d) 9				
ii.	$\int \frac{1}{x^2} dx$ equals				1			
	(a) $\frac{1}{x} + C$	(b) <i>x</i> + <i>C</i>	(c) $-2x + C$	(d) $2x + C$				
iii.	Total number of possible matrices of order 3×3 with each entry 2 or 0 is							
	(a) 9	(b) 27	(c) 81	(d) 512				
iv.	$A = [a_{ij}]_{m \times n}$ is	a square matrix, if			1			
	(a) <i>m</i> < <i>n</i>	(b) $m > n$	(c) $m = n$	(d) None of these				
v.	If $X + Y = \begin{bmatrix} 5\\ 0 \end{bmatrix}$	$\begin{bmatrix} 2\\9 \end{bmatrix}$ and $X - Y = \begin{bmatrix} 3 & 6\\0 & - \end{bmatrix}$	$\begin{bmatrix} 5 \\ 1 \end{bmatrix}$, then $X =$		1			
	(a) $\begin{bmatrix} 8 & 8 \\ 0 & 8 \end{bmatrix}$	(b) $\begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix}$	(c) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$	(d) None of these				
vi.	If A is of order 2	$X \times 3$ and <i>B</i> is of order 3	3 imes 2, then order of	AB is	1			
	(a) 3 × 3	(b) 2×2	(c) 3 × 2	(d) 2 × 3				
vii.	Find the missing	term in the series: 3, 2	20, 63, 144, 275, ?		1			
	(a) 354	(b) 468	(c) 548	(d) 554				

Q. 4	Answer any 5 out of the given 7 questions (1 x 5 = 5 marks)					
i.	In a certain code, TE code?	ACHER is written as V	VGCEJGT. How CHIL	DREN written in that	1	
	(a) EJKNEGTP	(b) EJKNFITP	(c) EJKNFGTO	(d) EJKNFTGP		

ii.	A man is facing wes	st. He turns 45^o in the	e clockwise directior	and then another	1			
	180^o in the same d	180^{o} in the same direction and then 270^{o} in the anticlockwisedirection. Which						
	direction is he facin	ig now?						
	(a) South	(b) North-West	(c) West	(d) South-West				
iii.	Choose the word w	hich is least like the c	other words in the g	roup.	1			
	(a)copper	(b) Zinc	(c) Brass	(d) iron				
iv.	The equation of the	The equation of the line through (-2, 3) with slope -4 is						
	(a)4x+y+5= 0	(b) x+4y-5=0	(c) 5x+4y+4=0	(d)x+y+5=0				
v.	The equation of the line joining the points (a,0) and (0, b) is							
	(a) $ax + by = 0$	(b) $bx + ay = 0$	(c) $\frac{x}{b} + \frac{y}{a} = 1$	(d) $\frac{x}{a} + \frac{y}{b} = 1$				
vi.	The point on the lir	1 = 3x - y - 1 = 0 wr	ose ordinate is 5, is		1			
	(a) (0, 4)	(b) (2, 5)	(c) (5, 2)	(d) (-2, 5)				
vii.	The equation of the and the angle which	e line, whose perpend h the normal makes v	icular distance from vith positive direction	n the origin is 4 units on of x-axis is 15°, is	1			
	(a) $(\sqrt{3} + 1)x + (x + 1)x + (x$	$\sqrt{3} - 1)y = 8\sqrt{2}$ $\sqrt{3} + 1)y = 8\sqrt{2}$	(b) $(\sqrt{3}+1)x -$ (d) $(\sqrt{3}-1)x -$	$(\sqrt{3} - 1)y = 8\sqrt{2}$ $(\sqrt{3} + 1)y = 8\sqrt{2}$				

Q. 5	Answer any 5 out of the given 7 questions (1 x 5 = 5 marks)				
i.	Let A and B be two events such that $P(A) = 0.6$, $P(B) = 0.2$ and $P(A/B) = 0.5$, then	1			
	P(A'/B') is				
	$(a) \frac{1}{a}$ $(b) \frac{3}{a}$ $(c) \frac{3}{a}$ $(d) \frac{6}{a}$				
	$\begin{pmatrix} a \\ 10 \end{pmatrix}$ $\begin{pmatrix} b \\ 10 \end{pmatrix}$ $\begin{pmatrix} c \\ 8 \end{pmatrix}$ $\begin{pmatrix} c \\ 7 \end{pmatrix}$				
ii.	If A and B are events such that $P(A/B) = P(B/A)$, then	1			
	(a) $A \subset B$ but $A \neq B$ (b) $A = B$ (c) $A \cap B = \phi$ (d) $P(A) = P(B)$				
iii.	A man throws a fair coin a number of times and gets two points for each head he	1			
	throws and 1 point for each tail he throws. The probability that he gets exactly 6				
	noints is				
	(a) $\frac{21}{21}$ (b) $\frac{23}{41}$ (c) $\frac{43}{43}$				
	(a) $_{32}$ (b) $_{32}$ (c) $_{64}$ (d) $_{64}$				
iv.	Out of 100 bicycles, 10 bicycles have punctures. What is the probability of not	1			
	having any nunctured bicycle in a sample of 5 bicycles?				
	having any punctured beyere in a sample of 5 beyeres:				
	$(a) \frac{1}{2}$ 1 (a) 5 1				
	(a) $_{2^5}$ (b) $_{\overline{2^9}}$ (c) $\left(\frac{5}{10}\right)$ (d) $_{\overline{10^5}}$				
	- (10) 10				
L	1	<u> </u>			

v.	The corner points of the feasible region determined by the following system of	1					
	linear inequalities: $2x + y \le 10, x + 3y \le 15, x, y \ge 0$ are (0, 0), (5, 0), (3, 4) and						
	(0, 5). Let $Z = px + qy$, where $p, q > 0$. Conditions on p and q so that maximum of						
	Z occurs at both (3, 4) and (0, 5) is						
	(a) $p = q$ (b) $p = 2q$ (c) $p = 3q$ (d) $q = 3p$						
vi.	Objective function of a L.P.P. is	1					
	(a) A constraint (b) A function to (c) A relation between (d) None of these be optimized the variables						
vii.	Uses of index number is						
	 I. Economic Barometer II. Measure the purchasing power of money 						
	III. Helps in framing suitable policies						
	(a) Only I is true (b) Only II is true (c) All are true (d) None is true						

Q. 6	Answer any 5 out of the given 7 questions (1 x 5 = 5 marks)						
i.	The minimum valu	ie of $P = 6x + 16y$	subject to the constra	aints $x \le 40, y \ge 20$	1		
	and $x, y \ge 0$ is						
	(a) 240	(b) 320	(c) 0	(d) None of these			
ii.	The maximum valu	ue of $P = 40x + 50$	y subject to the const	craints $3x + y \le 9, x + y \le 9$	1		
	$2y \leq 8, x \geq 0$ and	$y \ge 0$ is					
	(-) 120	(1-) 220	$\langle a \rangle$ 200				
	(a) 120	(D) 230	(C) 200	(d) None of these			
iii.	A person invests R	s. 20,000 at 20 %, R	s. 150 shares at a prer	nium of Rs. 50. The	1		
	income from these	e shares in Rs. is					
	(a) 1,000	(b) 3,000	(c) 1,500	(d) 2,000			
iv.	The total investment made in buying Rs. X shares at a premium of 25 % is Rs. 125 X.						
	The number of sha	ares bought is					
		0					
	(a) 500	(b) 250	(c) 125	(d) 100			
V.	Ramesh opens a S	aving Bank Account	on 16.06.2007 with a	deposit of Rs. 700. He	1		
	deposited Rs. 1.50	0 on 07.07.2007. fin	d the amount on whi	ch he would receive the			
	interest at the end	of July 2007					
		i oli july, 2007					
	(a) Rs. 700	(b) Rs. 1,500	(c) Rs. 2,200	(d) Rs. 800			
•							
VI.	Indian GST model	nas rate struct	ure		1		
	(a) 3	(b) 4	(c) 5	(d) 6			
				(-/ -			

vii.	A fan is sold for	fan is sold for Rs. 900 cash payment of Rs. 200 down payment followed by two 1							
	equal monthly	equal monthly installments of each Rs. 375. The annual rate of interest is							
	(approximately	(approximately)							
	(a) 25 %	(b) 30 %	(c) 54 %	(d) 59 %					

Q. 7	Answer a	ny 5 out of the g	iven 7 g	uestion	s (1 x 5 :	= 5 marl	ks)			
i.	Mother, F	ather and Son lir	ne up at	random	n for a fa	mily pic	ture.			1
	E: Son on	one end								
	F: Father i	n middle								
	then $P\left(\frac{E}{-}\right)$	lis								
	(F)									
	(a) 0	(b) 1			$(c) \frac{1}{2}$		(1		
		(~7 -	- Fac 1	1000 010	$\frac{(c)}{2}$	ho conc	trainta a	$\frac{1}{3}$	1	1
	ine maxin	num value of $Z =$	= 5x +	10y sub	ject to t	ne cons	traints <i>x</i>	$x - y \leq x$	-1, -x +	1
	$y \leq 0, x \geq$	≥ 0 and $y \geq 0$ is								
	(a) 1 (b)-10 (c) 2010 (d) No value						lue			
iii.	The Price	Relative (Simple	Index N	umber)	based o	n 1998 f	for the y	ear 199	0 from	1
	the follow	ing data:								
		Year:	1988	1989	1990	1991	1992	1993		
		Price (in Rs.):	120	140	150	165	175	240		
	is								I	
			<u></u>		() (0)					
	(a) 120.0	(b) 1	.25.0	which is	(c) 122		(0) 126.0		1
10.	Choose th	e number of pair	rgroup	which is	unterer	it from (Juners			T
	(a) 55 — 6	66 (b) 3	82 - 48		(c) 63-	77	(d) 64-80		
v.	If $f(x) =$	$1 - x + x^2 - x^3$	+…–	$x^{99} + x$	z^{100} , the	nf'(1)	is			1
	(2) 150	(b) 5	:0		(c) _15	0) _50		
vi.	$\int (a) 150$	hen find the ord	er of the	- matrix	$\frac{(0)}{7X} - 5$	V Wher	e X and	Y are of	forder	1
•	$2 \times n$ and	$2 \times n$			// 5	1, When		I uic o	oraci	-
	(a) <i>p</i> × 2	(b) 2	$2 \times n$		(c) <i>n</i> ×	3	(d) p × n		
vii.	In the seri	es 7, 14, 28,	, the 1	0th tern	n is					1
	(a) 1792	(b) 2	456		(c) 358	34	(d) 4096		

SECTION B: SUBJECTIVE TYPE QUESTIONS

Answer any 7 out of the given 9 questions in (2 x 7 = 14 marks)

Q. 8	The cost function for the manufacture of x number of goods by a company is			2		
	$C(x) = x^3 - 9x^2 + 24x$					
	Find the level of output at wh	ich the marginal cost is mir	nimum.			
Q. 9	A company issued shares at 10% premium Satish applied for1000 shares but was allotted 500 shares of this company. Find his investment if the face value of a share is Rs. 100.					
Q. 10	A die is thrown twice and sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4has appeared at least once?					
Q. 11	Rs. 10,00,000.00 is taken loan at the interest rate 11 % per annum. Calculate the EMI paid every month if the loan period is 15 years.					
Q. 12	Solve the following linear programming problems graphically. Maximize $Z = 4x + y$ Subject to $x + y \le 50$, $3x + y \le 90$, $x \ge 0$, $y \ge 0$					
Q. 13	Q. 13 From the following data, construct price Index number for 1998 taking 1996 base year:					
	Commodity	Price in 1996 (in Rs.)	Price in 1998 (in Rs.)			
	A	50	90			
	В	40	70			
	C	80	120			
	D	110	150			
	E	20	30			
Q. 14	From the following data construct price Index number for 1997 taking 1995 as the base by simple aggregative method using Arithmetic Mean:					
	Commodity	Price in 1995 (in Rs.)	Price in 1997 (in Rs.)			
	Α	50	70			
	В	40	60			
	C	80	90			
	D	110	120			
	E	20	20			
Q. 15	Evaluate $(1101)_2 \times (11)_2$.					
Q. 16	Find non-zero values of x satisfying the matrix equation: $x \begin{bmatrix} 2x & 2\\ 3 & x \end{bmatrix} + 2 \begin{bmatrix} 8 & 5x\\ 4 & 4x \end{bmatrix} = 2 \begin{bmatrix} x^2 + 8 & 24\\ 10 & 6x \end{bmatrix}$					

Answer any 2 out of the given 4 questions (3 x 2 = 6 marks)

Q. 17	Three persons A, B, C throw a dice in succession till one gets a 'six' and wins the game. Find the respective probabilities of their winning.	3
Q. 18	Convert the decimal number 27.1875 to its binary equivalent.	3
Q. 19	If the total revenue received (in Rs.) from the sale of x units of a product is given by $R(x) = 3x^2 + 36x + 5$, find the marginal revenue, when $x = 5$.	3
Q. 20	Maximize $Z = 2.50x + y$, subject to $x + 3y \le 12$, $3x + y \le 12$ and $x, y \ge 0$.	3

Answer any 3 out of the given 5 questions (5 x 3 = 15 marks)

Q. 21	Find the derivative of f from first principal $f(x) = x + \frac{1}{x}$.	
Q. 22	If $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$, find $A^2 - 5A + 4I$ and hence find a matrix X such that $A^2 - 5A + 4I + X = 0.$	5
Q. 23	 The marked price of an article is Rs. 50,000. The wholesaler allows a discount of 10 % to a shopkeeper. The shopkeeper sells the article to a consumer at 4 % above the marked price. If the sales are intra-state and the rate of GST is 10 %, find (i) The amount inclusive of tax (under GST) which the shopkeeper pays for the article. (ii) The amount paid by the consumer for the article. (iii) The amount of tax (under GST) paid by shopkeeper to Central Government. 	5
Q. 24	A bag contains 3 white and two black balls and another bag contains 2 white and 4 black balls. One bag is chosen at random. From the selected bag, one ball is drawn. Find the probability that the drawn ball is white.	5
Q. 25	Maximize the profit $Z = 1000x + 600y$ subject to $x + y < 200, x \ge 20, 4x \le y$ and $x, y \ge 0$.	5