
भूगोल (029) कक्षा-XI

मुक्त पाठ-आधारित मूल्यांकन वार्षिक परीक्षाः मार्च-2014

विषयः	पृष्ठ
1. भारतीय ग्रीष्मकालीन मानसून तथा	1
हिमालयी सुनामी	

2. क्राकाटाऊ ज्वालामुखीः पूर्वी द्वीप समूह ¹⁷ का आंतक

CENTRAL BOARD OF SECONDARY EDUCATION

Shiksha Kendra, 2, Community Centre, Preet Vihar, Delhi-110 092 India

मुक्त पाठ्य सामग्री

1. मूल विषय : भारतीय ग्रीष्मकालीन मानसून तथा हिमालयी सुनामी

सारांश:

भारतीय ग्रीष्मकालीन मानसून देश की अर्थव्यवस्था और लोगों के लिए हमेशा से ही प्राणाधार रहा है। किन्तु, मानसून की अनियमितता और परिवर्तनशीलता के कारण उत्तराखंड हिमालय की भीषण बाढ़ जैसी आपदाएँ प्रायः आती रहती हैं। उत्तराखंड में आई आकस्मिक बाढ़ से भारी तबाही हुई है। विवेकहीन मानवीय क्रियाकलापों और लापरवाह पर्यटन के कारण प्राकृतिक प्रकोप का खतरा कई गुना बढ़ गया है। भू-भौतिक गतिकी के साथ-साथ बादल फटने जैसी घटनाएँ इस प्रदेश के लिए गंभीर खतरा बन गई हैं। यहाँ हाल ही में हुई जलवायु घटनाओं के विषय में सही समझ और ज्ञान की कमी तथा आपदा प्रबंधन न होने से, पारिस्थितिक दृष्टि से कमज़ोर इस क्षेत्र में रहने वाले लोगों की किठनाईयाँ और अधिक बढ़ गई हैं।

उत्तराखंड हिमालय में जून 2013 की मूसलाधार वर्षा के परिणामस्वरूप भारी विनाश हुआ जिसमें सैकड़ों लोग मारे गए, हजारों बेसहारा हो गए और बीसियों गाँव पानी में बह गए। यही नहीं आठवीं शताब्दी का केदारनाथ मन्दिर भी जलमग्न हो गया। भागीरथी के तट पर स्थित प्रसिद्ध मणिकरिणका मन्दिर नदी के उमड़ते-घुमड़ते जल में बह गया। भागीरथी, अलकनन्दा और मन्दाकिनी के तटों पर बने मकान और भवन नदी के उफनते पानी में ढह कर गिर पड़े तथा कारों और ट्रकों के साथ बह गए।

उत्तराखंड के सात जिलों के कई भागों में आकस्मिक बाढ़ से हुई भारी हानि दिमाग को सुन्न कर देती है। (देखिए सारणी सं० 1.1) एक मंजिला मकान तो बह गए, अनेक दो मंजिले मकान, नींव के कमज़ोर होने के कारण खंड-खंड हो कर टूट गए। बहुत से लोग इस आपदा से बचकर भागने में सफल हो गए, लेकिन नदी के वेग में बहकर आई कीचड़ में अनेकों पशु फंस कर मर गए। अतः सड़ी हुई लाशों की बदबू पूरे क्षेत्र में फैलने से प्रदूषण का खतरा बढ़ गया। पेयजल दूषित हो गया तथा अनेक स्थानों पर बिजली आपूर्ति पुनः चालू नहीं हो सकी।

सामान्य समय से पूर्व और अत्यधिक भारी वर्षा ने पहाड़ी राज्य को इस सीमा तक बर्बाद किया है कि सरकार को आम जन जीवन के पुनर्स्थापन में महीनों लग जाएंगें। यह आपदा उस समय आई जब 'चार-धाम' की यात्रा जारी थी और सारे देश से लगभग 75000 तीर्थयात्री यहाँ इकट्ठा हुए थे। भारतीय सेना, भारतीय वायुसेना, भारतीय तिब्बत सीमा पुलिस और सीमा सड़क संगठन के साथ केन्द्र सरकार ने लगभग 33000 बेसहारा तीर्थयात्रियों को बचाया। बाढ़ इतनी भयंकर और विनाशकारी थी कि लोगों ने इसका नामकरण 'हिमालयी सुनामी' ही कर दिया।

उत्तराखंड में बाढ आपदा की जिलेवार स्थिति

कुल जिले : 13				7	प्रभावित जि	नले : 09	
	रुद्रप्रयाग	चमोली	उत्तरकाशी	टिहरी	पिथौरागढ़	बागेश्वर	अल्मोड़ा
प्रभावित गांवों की संख्या	> 60	39	28	15	10	08	08
लापता लोगों की संख्या	> 10,000 (तीर्थयात्रियों सहित)	> 2500 (तीर्थयात्रियों सहित)	_	_	लगभग 100	s	_
क्षतिग्रस्त मकानों की संख्या	600 – 700	120 - 130	150 - 160	50-60	20-25		

सारणी 1.1, स्रोतः स्फिर India 2013, नई दिल्ली

उत्तराखंड में पंजीकृत वाहन

वर्ष	निजी वाहन	पर्यटक वाहन
2005-06	83,000	4000
2012 - 13	1,80,000	40,000
Percent increases	46%	10 %

सारणी 1.2, Source: Down to Earth, June, 18, 2013

कई पर्यावरणविदों ने इस घटना को मानव निर्मित कहा है। उनके अनुसार, मानवीय क्रियाकलापों से पर्यावरण में हुए परिवर्तनों ने समस्या को और अधिक गंभीर बना दिया और प्राकृतिक व्यवस्था को बर्बाद कर दिया। विगत तीन दशकों में इस प्रदेश में जनसांख्यिकीय परिवर्तन, वनों को काटना, तीव्र नगरीकरण तथा सड़कों का विस्तार हुआ है। पर्यावरणविदों ने जोर देकर कहा है कि पहाड़ों द्वारा भार वहन करने की एक निश्चित क्षमता होती है, जिसका किसी भी कीमत पर उल्लघन नहीं होना चाहिए। उत्तराखंड और हिमाचल प्रदेश दो ऐसे हिमालयी राज्य हैं जहां जून 2013 में आकस्मिक मानसूनी बाढ़ से सर्वाधिक हानि हुई है। मानव निर्मित कारकों ने आपदा के स्वरूप को और अधिक बढ़ा दिया। पनबिजली योजनाओं का बेरोकटोक विस्तार, बढ़ता हुए पर्यटन; विशेष रूप से धार्मिक पर्यटन आदि की सुविधा के लिए सड़कों का निर्माण ही इस भयंकर विनाश का कारण है। उत्तराखंड में पहाड़ों को काटकर बनी सड़कों पर तेजी से बढ़ते वाहनों की संख्या को सारणी 1.2 में स्पष्ट रूप से वेखा जा सकता है।

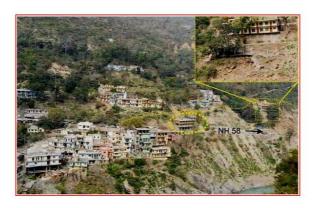
विशेषज्ञों के अनुसार, सड़कों और परिवहन के विस्तार के लिए अधिकतर मात्रा में पहाड़ों की मिट्टी ढहाने से पहाड़ नीचे की ओर खिसका रहे हैं। पारिस्थितिक दृष्टि से कमजोर इस प्रदेश में पर्यटकों के आवास के लिए रिसार्ट्स, अतिथिग्रहों और सड़कों का विवेकहीन अवैध निर्माण हुआ है। नदी के प्रवाह के लिए मौजूद प्राकृतिक मार्ग अतः पुरानी नालियों और सरिताओं पर भी भवन खड़े हो गए हैं, जिसके कारण यह प्रवाह अवरुद्ध हो गया। अलकनन्दा और उसकी सहायक नदी मन्दािकनी में आई बाढ़ से यह पुनः अपने पुराने मार्ग पर बहने लगीं, जहाँ पर समय बीतने के साथ मानव आवास भवन बन गए थे, और अपने मार्ग में आने वाली समस्त रूकावटों को धराशयी कर दिया।



चित्र 1.2: केदारनाथ मन्दिर 1882

चित्र 1.3: अलकनन्दा का नया परिवर्तित मार्ग

मन्दािकनी मार्ग बदलकर पश्चिम की ओर बहने लगी। अवसादों से युक्त मन्दािकनी दुकानों, अतिथि-गृहों तथा यात्री निवासों को अपने साथ बहा ले गई। उस समय उनमें रह रहे सभी लोग मारे गए। केदारनाथ धाम शान्ति और भिक्त का स्थान है। सन् 1882 में मन्दिर के आस-पास केवल कुछ झोपड़ियाँ ही थी। (देखिए चित्र सं० 1.2) धीरे-धीरे यहाँ अनियोजित ढंग से कई अवैध भवन, दुकानें, होटल / यात्री निवास आदि बन गए, जिसके फलस्वरूप अलकनन्दा का प्राकृतिक मार्ग अवरुद्ध हो गया। (देखिए चित्र सं० 1.3)



चित्र 1.5: बाढ़ के बाद केदारनाथ घाटी

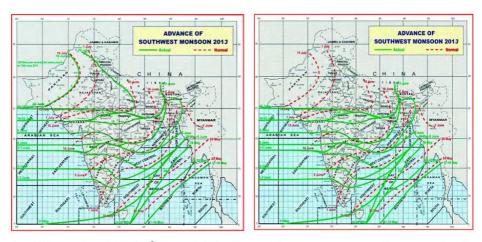
अत्यधिक वर्षा, झील का बांध टूटने और हिमानियों के पिघलने से अतिरिक्त जल ग्रहण कर जब (मन्दािकनी) नदी नए प्राकृतिक मार्ग की ओर अग्रसर हुई, तब इसके नए मार्ग में मौजूद सभी निर्माण शीघ्र ही नष्ट हो गए।

विशेषज्ञों ने इस बिंदु को स्पष्ट किया कि अलकनन्दा और मन्दािकनी दोनों ऐसी निदयाँ हैं जो हिमालय की संकरी घािटयों में बहते हुए अक्सर अपना मार्ग बदलती रहती हैं। इस क्षेत्र के आकृतिमूलक विन्यास के कारण, नदी का मार्ग बहुत टेढ़ा-मेढ़ा है और इसी कारण इसकी अपरदन क्षमता उच्च स्तर की हो गई है। यह क्षमता तब और भी बढ़ जाती है जब इसमें अवसाद भर जाते हैं। एक अनुमान के अनुसार गंगा और इसकी सहायक, अलकनन्दा, मन्दािकनी, भागीरथी, काली गंगा, गौरी गंगा के आसपास स्थित संवेदनशील क्षेत्र में बने 300 से अधिक बहुमंजिल भवन, होटल, दुकानें और अन्य व्यापारिक प्रतिष्ठान, आकस्मिक बाढ़ के कारण या तो बह गए या क्षतिग्रस्त हो गए।

चित्र 1.6: रुद्रप्रयाग में भूस्खलन तथा ढाल विस्थापन

उत्तराखंड के प्रमुख भूस्खलन

स्रोत: Current Science Vol. 100, No.11, 10 June, 2011


मानवीय क्रियाकलापों में वृद्धि और भू-भाग की अस्थिरता के कारण उत्तराखंड हमेशा से ही भूस्खलन जैसी घटनाओं के लिए संवेदनशील रहा है। सन् 2010 में अगस्त और सितंबर के महीनों में भी उत्तराखंड में बड़े पैमाने पर ढाल का विस्थापन हुआ है। ऐसी घटनाऐं वहाँ अधिक हुई जहाँ सड़कों को चौड़ा बनाने का कार्य प्रगति पर था। रुद्रप्रयाग के आस-पास राष्ट्रीय राजमार्ग-58 के चौड़ीकरण के कारण ढाल विस्थापन हुआ है। चित्र संख्या 1.6 में पीली बिन्दुकित रेखाएं हाल ही में हुए ढाल विस्थापन की ओर संकेत करती हैं। सड़क चौड़ीकरण के दौरान ढाल में हुए बदलाव संचलन के कारण एक मकान क्षतिग्रस्त हो गया था। यह त्रासद भूस्खलन मुख्य रूप से जुलाई तथा अगस्त में आई बाढ़ का परिणाम है जिसने अनेकों लोगों को काल के मुँह में धकेल दिया। परम्परागत रूप से प्रमुख भूस्खलन, बृहत् हिमालय और लघु हिमालय के संक्रमणकालीन क्षेत्र में होते हैं। इसका कारण यह है कि इस क्षेत्र में अधिकतर तीव्र ढाल हैं। यहाँ भारी वर्षा (बादल फटना) होती है तथा अक्सर भूकंप आते हैं।

चित्र 1.7: नैनीताल जिले में जुलाई 2013 को हुआ भूस्खलन

इस वर्ष उत्तराखंड के उत्तरकाशी और चमोली जिलों में लगातार वर्षा से भी अनेक भूस्वलन हुए हैं। इनसे उत्तरकाशी में 30 मकान क्षतिग्रस्त हुए तथा चमोली जिले में चार बस्तियाँ नष्ट हो गई। नैनीताल के भीमतालक्षेत्र में भारी वर्षा के दौरान भूस्वलन ने चार जाने ले लीं। भूस्वलन और उसके साथ गिरे मलबे के कारण उत्तराखंड में हमेशा से ही जल इकट्ठा होता रहा है, जिससे आकस्मिक बाढ़ आती है। जून 2013 की उत्तराखंड आपदा जिसे हिमालयी सुनामी भी कहते हैं, वास्तव में जून 16-18 के दौरान हुई भारी वर्षा और भारत में इस वर्ष मानसून के असामान्य व्यवहार का परिणाम थी।

जून 16 और 17, 2013 में देहरादून में क्रमश: 22 सेमी और 37 सेमी वर्षा हुई थी। इससे वर्षा की भयंकर स्थित का संकेत मिलता है। हरिद्वार में दो दिनों में 10.7 सेमी और 21.8 सेमी वर्षा हुई। उत्तरकाशी में 12.2 सेमी और 20.7 सेमी वर्षा हुई। 2000 मीटर की ऊँचाई पर स्थित मुक्तेश्वर में जून 17 और 18 को क्रमश 23.7 सेमी और 183 सेमी वर्षा रिकार्ड की गई। इन दिनों नैनीताल में भी 17.6 सेमी और 17 सेमी वर्षा हुई। इस वर्ष मानसून की प्रगति अनोखी थी। जून 14 को मानसून का वाताग्र पूर्वी भारत में स्थित था। वाताग्र की सामान्य प्रगति की तुलना में यह बहुत धीमा था। लेकिन एक ही दिन में (देखिए मानचित्र संठ 1.1 और 1.2) वाताग्र उत्तर प्रदेश को पार करके पश्चिमी प्रदेशों में आगे बढ़ गया और 15 जून तक सारे देश में फैल गया। इस प्रकार यह 15 जुलाई की सामान्य तिथि से ठीक एक महीना ही आ गया।

मानचित्र 1.1: 14 जून 2013 को मानसून की प्रगति मानचित्र 1.2: 15 जून 2013 को मानसून की प्रगति

2008 से 2012 तक उत्तराखंड में जिलेवार वर्षा की प्रवृत्ति

		चमोली		रुद्रप्रयाग		उत्तरकाशी
वर्ष	वर्षा	लंबी अवधि के	वर्षा	लंबी अवधि के	वर्षा	लंबी अवधि के
	(सेमी	औसत से विचलन	(सेमी	औसत से विचलन	(सेमी	औसत से विचलन
	में)	(प्रतिशत में)	में)	(प्रतिशत में)	में)	(प्रतिशत में)

2008	16.38	58	14.88	-30	29.83	90
2009	3.22	-69	1.78	-92	19.73	31
2010	12.18	18	16.66	- 21	18.99	26
2011	17.05	57	36.96	70	36.37	146
2012	4.11	-62	9.54	-56	4.56	-69

सारणी 1.3

भारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

to the second se

मानचित्र 1.3

विगत पाँच वर्षों के वर्षा के आँकड़ों के विश्लेषण से भारत में वर्षा की प्रवृत्ति में परिवर्तनों का पता चलता है कि उत्तराखंड में कई बार औसत से अधिक वर्षा हुई है। हाल ही में आई बाढ़ से प्रभावित क्षेत्रों में, विशेष रूप से उत्तरकाशी में, विगत कई वर्षों में जून के महीने में औसत से अधिक वर्षा हुई है। सारणी सं० 1.3 से प्रकट है कि 2011 में उत्तरकाशी में लंबी अवधि के औसत की तुलना में 146 प्रतिशत अधिक वर्षा हुई है। सन् 2010, 2009 और 2008 में क्रमशः 26 प्रतिशत, 31 प्रतिशत और 98 प्रतिशत अधिक वर्षा हुई है। चमोली में जून 2011 में 57 प्रतिशत, 2010 में 18 प्रतिशत, 2008 में 59 प्रतिशत, औसत से अधिक वर्षा हुई है। रुद्रप्रयाग में 2008 और 2009 में औसत से कम तथा 2011 में औसत से 70 प्रतिशत अधिक वर्षा हुई है। मानूसन वाताग्र की पूरे पश्चिमी प्रदेश के आर-पार केवल एक दिन में इतनी प्रगति पूरी तरह से अप्रत्याशित थी। यह

दक्षिण-पश्चिम मानसून के पूर्व से पश्चिम की ओर सुनिर्मित निम्न वायुदाब तंत्र तथा उत्तर-पश्चिमी राजस्थान से लेकर पूर्व तक विस्तृत उपरितन पश्चिमी वायु द्रोणी की अंतर्क्रिया के परिणामस्वरूप उत्तराखंड में भारी बारिश हुई। वास्तव में पश्चिमी तंत्र ने राजस्थान और मध्य भारत के ऊपर विद्यमान मानसून द्रोणी को उत्तर की ओर हरियाणा के आर-पार खींच लिया इसके तीव्रगति से उत्तर की ओर खिसकने के कारण देश के पूर्वी भाग में स्थित निम्न वायुदाब तंत्र तेजी से आगे

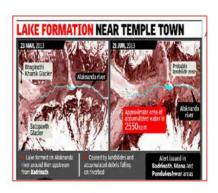
बढ़ता हुआ उत्तर-पश्चिम भारत के ऊपर टिक गया। भारतीय मौसम विभाग के अनुसार उत्तर-पश्चिम भारत मानसून की अरब सागर और बंगाल की खाड़ी की शाखाओं का असाधारण संगम क्षेत्र बन गया है। पश्चिमी विक्षामों और मानसूनी बादलों के तंत्र के मिलन से उत्तराखंड में असामान्य रूप से भारी बारिश हुई (400 प्रतिशत से भी अधिक)। भारी बारिश से निदयाँ अपने ऊपरी और निचले दोनों ही भागों में उफन पड़ीं। वर्षा जल के अलावा, मई और जून के महीनों के ऊंचे तापमान ने पहाड़ों की बर्फ और हिमानियों को पिघला दिया और यह जल भी वर्षा जल में जा मिला। इस जल से न केवल झीलें और निदयां ही लबालब भरीं अपितु घाटियों के ऊपरी भागों में हिमोढ़ों के बांध के पीछे बनी झीलें भी टूट गईं। उत्तराखंड आपदा के विष्य में मौसम विज्ञानियों और वैज्ञानिकों के द्वारा दिए गए तर्कों ने संभावित कारण और भारतीय ग्रीष्मऋतु के मानसून की भूमिका के बारे में हमारी जिज्ञासा को बढ़ा दिया है, क्योंकि मानसून तो सारे देश और अर्थव्यवस्था के लिए वरदान माना गया है। ऐसे अनेक उदाहरण हैं जब बाढ़ (प्रभावशाली मानसून) और सूखा (कमज़ोर मानसून) का दौर

रहता है। इस अवधि में संपूर्ण भारत में मौसमी वर्षा कभी अधिक तो कभी कम होती है। यहाँ तक कि पूरे मौसम में ही दिक्काल की दृष्टि से काफी भिन्नता दिखाई पड़ती है।

उत्तराखंड राज्य सहित, मध्य और उत्तरी भारत के अधिकतर भागों में 2013 में जून और अगस्त के महीनों में औसत से अधिक वर्षा हुई है। (देखिए मानचित्र सं० 1.3) इस वर्ष अधिक वर्षा से गंगा और उसकी सहायक नदियाँ इस प्रदेश में खतरे के निशान से ऊपर या खतरे के निशान के निकट बहने लगीं जिससे अनेक गाँव बाढ ग्रस्त हो गये थे। अगस्त 2013 में हरिद्वार में गंगा खतरे के निशान (294 मीटर से थोड़ा ही नीचे) 293.70 मीटर पर बह रही थी। इसी प्रकार शारदा नदी चंपावत के टनकपुर में खतरे के निशान से ऊपर बह रही थी।

अलकनन्दा चमोली में खतरे के निशान तक पहुँच गई थी। जून 2013 में निदयों के ऊपरी भागों में भारी वर्षा से निचले भागों में भी बाढ आ गई। इस अवधि में उत्तर प्रदेश के फतेहगढ में गंगा खतरे के निशान के निकट बह रही थी। राप्ती भी अनेक स्थानों पर खतरे के निशान के पास थी। सिद्धार्थ नगर के ककरही में बढ़ी राप्ती लाल निशान से ऊपर थी। दिल्ली में यमुना भी खतरे के निशान के पास बह रही थी, जिसके कारण रेल के 145 साल पुराने पुल को बंद करना पडा था और नदी के तट से 2000 परिवारों को हटाया गया था। दिल्ली में यमुना के लिए खतरे का निशान 204.83 मीटर है, जबिक जल स्तर 206.48 मीटर तक पहुँच गया था।

यह बिन्दु ध्यान देने योग्य है कि उत्तराखण्ड की त्रास्त्री के समय भाग्यवश दिल्ली में भारी वर्षा नहीं हुई, अन्यथा राष्ट्रीय राजधानी में भी भयंकर आपदा आ सकती थी। चित्र सं० 1.8 में उफनती हुई नदी के कारण जलमग्न निम्न भूमि क्षेत्र तथा नगर के बाढ़ प्रवण और बाढ़ में असुरक्षित वे क्षेत्र दिखाए गए हैं, जिन्हें जलस्तर के 207 मीटर पर पहुँचने से खतरा हो सकता है। अनेक वैज्ञानिकों का विश्वास है कि उत्तराखंड में 16 जून, 2013 की भारी वर्षा बादल फटने के कारण हुई थी। मेघ विस्फोट (बादल फटना) एक ऐसी घटना है, जिसमें किसी स्थानिक क्षेत्र पर बहुत तेज गित से भारी वर्षा होती है। यह क्षेत्र आमतौर पर 20–30 वर्ग किलोमीटर से बड़ा नहीं होता है, जबिक वर्षा का स्तर 10 सेमी प्रतिघंटा पहुँच सकती है जिससे आकिस्मिक बाढ़ आ सकती है। ऐसी ही घटनाएं इसी वर्ष उत्तरकाशी और उत्तरविमठ में तथा 2010 में लेह में घटी थीं। भारत में मेघ विस्फोट की घटनाएं विशेष रूप से मानसून में हिमालयी प्रदेश, उत्तर-पूर्वी राज्यों और पिश्चिमी घाट में दिखाई पड़ती हैं। ऐसी घटनाएँ मैदानों में भी हो सकती हैं, लेकिन वे बहुत विरल होती हैं। मानसून में मेघ विस्फोट प्रायः होते रहते हैं। ऐसा विश्वास है कि मेघ विस्फोट, किसी प्रदेश की तेज ढाल वाली पहाड़ियों के कारण मानसूनी मेघों के जल्दी से ऊपर उठने के कारण होते हैं। जून में हुए मेघ विस्फोट विगत वर्षों में रिकार्ड की गई घटनाओं से बहुत भिन्न थे। उत्तरखंड में 2012 में अनेक भयंकर मेघ-विस्फोटों की रिपोर्ट मिली हैं (देखिए सारणी सं० 1.4)


उत्तराखंड में 2012 में मेघ विस्फोटों का विवरण

तिथि	राज्य	जिला	प्रभावित गांव
05.07.2012	उत्तराखंड	उत्तरकाशी	अस्सी गंगा घाट, चारधनी, आदियार कला,
			फणीयारकला, रावदा
05.07.2012	उत्तराखंड	चमोली जिला	बेरिया क्षेत्र
04.08.2012	उत्तराखंड	उत्तरकाशी	दयारा बुग्याल, जोशी याड़ा, गंगोत्री पुल
19.08.2012	उत्तराखंड	उत्तरकाशी	नूरानू गांव, मोरी क्षेत्र
14.09.2012	उत्तराखंड	रुद्रप्रयाग	तमादा, संसारी गिरिया, चुनीयांद, मंगली, प्रेम नगर
			और ऊखीमठ क्षेत्र के जुआ-तोंक गांव
14.09.2012	उत्तराखंड	बागेश्वर जिला	अल्मोड़ा के निकट कपकोट

अधिकांश लोगों का कहना है कि जलवायु परिवर्तन के कारण मेघ विस्फोट बढ़ते ही जा रहे हैं, लेकिन भारत में चक्रवातों की तरह मेघ विस्फोटों की भविष्यवाणी करने का कोई तंत्र नहीं है, जिसका परिणाम होता है आकस्मिक बाढ़ें। भारतीय अंतरिक्ष अनुसंधान संगठन और संयुक्त राज्य के लैंडसैट के सुदूर संवेदन उपग्रहों से प्राप्त चित्रों के आधार पर तथा कार्टोसैट-2 द्वारा घटना के बाद के चित्रों से यह स्पष्ट है कि कस्बे के ऊपरी भागों से निदयों में भारी मात्रा में जल के साथ बहकर आए बड़े-बड़े पत्थरों और शिलाओं के मलबे के कारण महाविनाश हुआ है।

चित्र 1.9: केदारनाथ-बाढ़ से पहले और बाद के उपग्रह से लिए चित्र

चित्र 1.10:

राष्ट्रीय सुदूर संवेदन निगम द्वारा प्रसारित चित्रों के अनुसार, 15-17 जून की वर्षा के बाद भूस्खलन से झील बन गईं, जिसके कारण राज्य में अभूतपूर्व तबाही हुई। 21 जून को लिए गए भारतीय सुदूर संवेदन चित्रों में, अलकनंदा के उद्गम स्थान से थोड़ा सा नीचे एक उभार दिखाई पड़ रहा है (चित्र 1.10)। यह स्थान बद्रीनाथ से 8 किलोमीटर दूर था। अवरुद्ध नदी का क्षेत्र लगभग 2550 वर्ग मीटर था। अंशतः अवरुद्ध जलमार्ग के कारण 450 मीटर लंबी झील बन गई। झील का अवरोध टूट सकता था और नदी में बाढ़ आ सकती थी। अतः सरकार को ब्रदीनाथ के आस-पास के क्षेत्र में चेतावनी जारी करनी पड़ी। अन्य आपदाओं की तरह यहाँ भी लोगों को बचाने के लिए प्रशंसा और श्रेय के हकदार भारतीय सशस्त्र बल ही हैं। भारतीय सेना के जवान अपना काम करने के लिए प्रशिक्षित हैं, और उद्देश्य की पूर्ति के लिए वे संगठित होकर बिना किसी निजी स्वार्थ के अपना कार्य करते हैं।

आकस्मिक बाढ़ से प्रभावित तीर्थयात्रियों और असहाय स्थानीय लोगों की मदद और बचाव के लिए सेना के जवानों ने अपने जीवन की परवाह किए बिना रात-दिन काम किया। उन्होंने लोगों को भोजन, कंबल और दवाओं जैसी आवश्यक वस्तुएँ उपलब्ध करवाई। उत्तराखंड की बाढ़ से उजड़े हुए क्षेत्रों में लोगों की मदद के लिए भारतीय वायु सेना ने सर्वोत्तम सैन्य कौशल का उपयोग किया और सैकड़ों थके - हारे तीर्थयात्रियों और स्थानीय लोगों को बचाया। ऐतिहासिक दृष्टि से हैलीकॉप्टर आधारित 'राहत' ऑपरेशन अब तक का सबसे बड़ा बचाव कार्यक्रम था। खराब मौसम और खतरनाक परिस्थितियों के बावजूद 45 हैलीकॉप्टरों ने रात - दिन उड़ाने भरी; संसाधन जुटाए, लोगों को बचाकर राहत और रक्षा शिविरों में पहुंचाया। लोगों को खोजने और बचाने के इस कार्यक्रम ने संसार में एक नया रिकार्ड बनाया है। ग्रीष्मकालीन मानसून की असामान्य प्रगति, मेघ विस्फोट (अभी तक पुष्टि नहीं) और भूभौतिकी की गतिकी (ढीली मिट्टी, भूस्खलन और झीलों का टूटना) ने भयंकर आकिस्मक बाढ़ के द्वारा उत्तराखंड में भारी तबाही मचाई थी। गैर जिम्मेदाराना पर्यटन के अत्यधिक विकास के कारण संसाधनों का दुरूपयोग और मानवीय क्रियाकलापों के सिम्मिलित प्रभाव के कारण इसने एक भयंकर आपदा का रूप ले लिया।

चित्र 1.11: भारतीय सेना द्वारा उत्तराखंड में बाढ़ प्रभावित लोगों के बचाव का कार्य।

चित्र 1.12: भारतीय वायुसेना का ऑपरेशन 'राहत'

- ☆ हमारे लिए अब यह अनिवार्य हो गया है कि मानसून और इसकी परिवर्तनशीलता पर गहन और संकेन्द्रित शोध किया जाए क्योंकि अब उपितन पश्चिमी द्रोणी और दक्षिण-पश्चिम मानसून के निम्न वायु दाब तंत्र के बीच की सही-सही गतिकी को रिकार्ड कर लिया गया है।
- ☆ परिष्कृत मौसमी निरीक्षण और पूर्व चेतावनी तंत्र का सुदूर संवेदन प्रौद्योगिकी की मदद से विकास करना और स्थल स्थित स्टेशनों को और सुदृढ़ करना महत्वपूर्ण हो गया है।
- ऐसे स्थानों की दुर्गम और विषय स्थित तथा मानसून की परिवर्तनशीलता को ध्यान में रखते हुए, भयंकर घटनाओं के बाद के बचाव और राहत कार्यक्रमों को और बेहतर बनाना जरूरी है।

विद्यार्थियों के रूप में हमें इस जटिल परिघटना को समझना चाहिए। इस प्रकार हम ऐसे क्षेत्रों में जाने वाले अपने परिवारों, संबंधियों और देशवासियों को सही जानकारी देकर उनकी मदद कर सकते हैं। उनकों संसाधनों के विवेकहीन उपयोग और धरती मां के शोषण के खतरों से अवगत कराना भी जरूरी है। प्रादेशिक जलवायु दशाओं की समझ और ज्ञान के प्रसार के द्वारा तथा प्रभावी आपदा प्रबंधन तंत्र की स्थापना के साथ ही हम प्रभावशाली ढंग से लोगों, संपत्ति और पर्यावरण को बचा सकेंगे। केदारनाथ पर आई प्राकृतिक विपदा लोगों और सरकार की आंखें खोलने वाली है, जो तत्काल कार्यवाही और प्रकृति के साथ तालमेल बनाकर धारणीय विकास की मांग करती है।

संदर्भिका :

- 1. Frontline, July 26, 2013, Vol. 30, no. 14, New Delhi, p. 34-35
- 2. http://www.oldindianphotos.in/2013/06/kedarnath-temple-garwal-himalaya-uttarakhand.html
- 3. http://www.downtoearth.org.in/content/what-really-happened-uttarakhand #glof
- http://www.hindustantimes.com/India-news/NorthIndiaRainFury2013/138dead-as-monsoon-fury-hits-north-India-flood-situation-grim-in-Uttarakhand/ Article1-1078740.aspx
- http://www.hindustantimes.com/India-news/NorthIndiaRainFury2013/138dead-as-monsoon-fury-hits-north-India-flood-situation-grim-in-Uttarakhand/ Article1-1078740.aspx
- 6. Sati, S.P. Sundriyal, Y.P. et.al. "Recent Landslides in Uttrakhand: Nature's Fury or Human Folly", *Current Science*, Vol. 100, No. 11, June 10, 2011.
- 7. http://www.thehindu.com/news/national/other-states/six-killed-in-nainital-landslide/article4908004.ece.
- 8. Indian meteorological department
- 9. Indian meteorological department
- 10. http://www.downtoearth.org.in/content/what-really-happened-uttarakhand #glof
- 11. Indian meteorological department

- 12. http://indiatoday.intoday.in/story/yamuna-crosses-danger-mark-in-delhi/1/284159.html
- 13. Kumar, V.V.G. Jain, K. and Gairola, A. "A Study and Simulation of Cloudburst event over Uttarkashi Region using River Tool and Geomatic Techniques", *International Journal of Soft Computing and Engineering*, Vol.3, Issue 1, March 2013.
- 14. http://www.geospatialworld.net/ImageoftheWeek/view.aspx?id=140
- 15. http://articles.timesofindia.indiatimes.com/2013-07-13/india/40553594_1_badrinath-alaknanda-water-level
- 16. http://www.niticentral.com/2013/06/20/monsoon-fury-kedarnath-temple-suffers-partial-damage-death-toll-hits-131in-north-india-91863.html
- 17. http://articles.timesofindia.indiatimes.com/2013-06-24/india/40165532_1_ kedarnath-gaurikund-pilgrims

आभारोक्ति :

- Why Kedarnath Happened, Frontline, July 26, 2013, Vol. 30, no. 14, New Delhi.
- ☆ Uttrakhand Disaster, Down To Earth, July 15, 2013, New Delhi.
- ☆ Das, P.K. The Monsoons, National Book Trust, 2006.
- http://www.britannicaindia.com/
- ☆ 138 Dead as Monsoon Furry Hits North India: Flood Situation Grim in Uttrakhand, Hindustan Times, Dehradun, June 19 2013.
- ☆ Singh, J. "What Really Happened in Uttrakhand", Down To Earth, July 3, 2013.
- Badrinath on Alert After Landslide from Lake Bomb, Times of India, New Delhi, July 13, 2013.
- Singh, J. "Rainfall Pattern Changing in Indi", Down To Earth, June 27, 2013.
- Steep Rise in Cases of Extreme Monsoon Rain, Times of India, September 17, 2012.
- ★ 50% Rise in Extreme Rain Incidence in last 50 years, Times of India, August 13, 2010.

नमूना प्रश्न :

- 1. "उत्तराखंड हिमालय की बाढ़ मानव निर्मित तथा प्राकृतिक आपदा है।" समीक्षा कीजिए।(5 अंक)
- 2. मान लो आप सेना के एक जवान के रूप में उत्तराखंड में बचाव कार्यक्रम में लगे हैं, आपको बचाव कार्यक्रम चलाते हुए किस प्रकार की संभावित चुनातियों का सामना करना पड़ा होगा? इस प्रकार की परिस्थितियों का सामना करने की अपनी रणनीति की चर्चा कीजिए। (5 अंक)

अंक योजना :

- निम्नलिखित तर्कों से युक्त उत्तर बिंदुओं को प्रस्तावित किया जाता है।
 - प्राकृतिक संसाधनों के दोहन पर पर्यावरणिवदों के विचार तथा प्रदेश की वहन क्षमता का ध्यान न रखना।
 - बड़े स्तर पर जलवायविक परिवर्तनों और हिमानियों के पिघलने से संबंधित मौसम विज्ञानियों के विषय।
 - 🔀 उत्तराखंड प्रदेश और देश के या संसार के अन्य भागों से उदाहरण।

(विस्तृत व्याख्या कीजिए।)

2. संपूर्ण मूल्यांकन

मुक्त पाठ्य सामग्री

2. मूल विषय : क्राकाटाऊ ज्वालामुखी : पूर्वी द्वीप समूह का आंतक

सारांश:

मानवता के इतिहास में क्राकाटाऊ ज्वालामुखी का उद्गार संसार के महाप्रलयंकारी ज्वालामुखीय उद्गारों में से एक था। यह विस्फोट इतना ताकतवर था कि इसने सारी दुनिया को हिलाकर रख दिया था। इससे विनाशकारी सुनामी लहरें पैदा हुईं, जिन्होंने जावा और सुमात्रा द्वीपों पर तबाही मचाई। उद्गार के कुछ वर्षों बाद प्रकृति अपने रास्ते पर चल पड़ी और बचे-खुचे क्राकाटाऊ द्वीपों पर विविध प्रकार के पेड़-पौधे और जीव-जन्तु फूलने-फलने लगे। क्राकाटाऊ के उभार ने तथा इसकी निरन्तर ज्वालामुखी हलचल ने पर्यटकों और वैज्ञानिकों को आकर्षित किया है। क्राकाटाऊ अब जैव विविधवता के संरक्षण और पारि-पर्यटन को प्रोत्साहित करने के लिए इण्डोनेशिया का प्रतीक दूत (ब्रांड-एम्बैसडर) बन गया है।

चित्र २.1: 1983 में क्राकाटाऊ के उद्गार का 1888 का एक अश्मलेख (लिथोग्राफ)

20 मई 1883 को जर्मनी के युद्धपोत 'ऐलिज़ाबेथ' ने अपनी रिपोर्ट में कहा था कि पूर्वी द्वीप समूह (इण्डोनेशिया) के जावा और सुमात्रा द्वीपों के मध्य स्थित बस्तीविहीन क्राकाटाऊ द्वीप पर राख का 11 किमी ऊँचा बादल दिखाई दिया था। इण्डोनेशिया में किसी भी ज्वालामुखीय उद्गार का यह पहला प्रलेख है। व्यापारिक वाहनों के चालक दल तथा जलयान के पर्यटकों को भी दो महीनों से भी अधिक समय तक वैसे ही दृश्य दिखाई देते रहे। ज्वालामुखी में होने वाले विस्फोट उमड़-घुमड़ की आवाज, काली राख और झांवों के बादलों ने स्थानीय निवासियों और पर्यटकों को मंत्रमुग्ध कर दिया था। इससे वहाँ एक उत्सव का माहौल बन गया था। लेकिन उनकी समझ में यह नहीं आया कि ये घटनाएं तो ऐतिहासिक समय के सबसे बड़े ज्वालामुखीय उद्गार की पूर्व भूमिका है। बहुत छोटा सा द्वीप होने के कारण उस समय में वहाँ कोई नहीं रहता था।

चित्र २.२: क्राकाटाऊ द्वीप

यह तो समुद्री लुटेरों के छिपने की जगह थी, जो व्यापारिक जहाजों को लूटने के लिए इस द्वीप का सहारा लेते थे। कई पीढ़ियों से क्राकाटाऊ के ज्वालामुखी सुषुप्त हैं। डच अधिकारियों ने बहुत पहले ही इसके दग्ध ज्वालामुखों की जांच कर ली थी और उनके विचार से ये ज्वालामुखी अब विलुप्त हो

चुके थे। इस प्रकार इस ज्वालामुखी के प्रकोप के प्रति एक अज्ञानता बन गई थी लेकिन 27 अगस्त 1983 की दोपहर बहुत आवेगी उद्गार के साथ प्रलयंकारी विस्फोटों की एक शृंखला शुरू हो गयी थी। सबसे पहले एक छोटे उद्गार ने ज्वालामुखी के मध्य भाग को समुद्र की तरफ खोल दिया था। इससे पानी रिसकर ज्वालामुखी में भर गया, पानी के भाप में बदलने से दबाव कई गुना बढ़ गया। इस अत्यधिक दबाव के कारण ज्वालामुखीय पर्वत टूटकर खंड-खंड हो गया। जिससे लाल तप्त मकान के आकार की शिलाएँ आकाश में बहुत ऊँचाई तक उछल गई।

19वीं और 20वीं शताब्दियों के सबसे बड़े ज्वालामुखी उद्गार

वर्ष	ज्वालामुखी	पहला ऐतिहासिक	मृ त्यु
1991	सैरो हड़सन (चिली)	नहीं	0
1991	पिनाटूबो (फिलीपीन्स)	हाँ	> 740
1982	एल चिचों (मैक्सिको)	हाँ	> 2000
1980	माउण्ट सेंट हेलेन्स (स०रा०अ०)	नहीं	57
1956	बेजीमियान्नी (कमचटका)	हाँ	0
1932	सैरोएजुल / क्विजापू (चिली)	नहीं	0
1912	नोवारुप्ता / कटमई (अलास्का)	हाँ	2
1907	सुडाक (कमचटका)	हाँ	0
1902	सांता मारिया (ग्वाटेमाला)	हाँ	> 5000
1986	तारावेरा (न्यूजीलैंड)	हाँ	153
1883	क्राकाटाऊ (इण्डोनेशिया)	नहीं	> 36417
1875	अस्कजा (आइसलैंड)	हाँ	0
1854	शिवेलुच (कमचटका)	हाँ	0
1835	कोसीगिना (निकारागुआ)	नहीं	5 – 10

1822	गालुनगुंग (इण्डोनेशिया)	हाँ	4011
1815	तम्बोरा (इण्डोनेशिया)	हाँ	60,000

सारणी 2.1: सबसे बड़े उद्गार

जलती हुई शिलाओं और राख के ऊँचे पर्वतीय क्षेत्र से नीचे की ओर आने से जावा और सुमात्रा द्वीपों के हजारों लोग तत्काल मौत के मुँह में चले गए। लोगों द्वारा देखा गया यह सबसे अधिक प्रचण्ड विस्फोट था। उद्गार का शोर, क्राकाटाऊ से 3000 मील (4830 किमी) की दूरी तक सुनाई पड़ा था। विस्फोट इतना शक्तिशाली था कि ज्वालामुखी टूटकर समुद्र में जा गिरा। समुद्र के नीचे के विस्फोटों ने विशालकाय लहरें पैदा कर दीं, जिन्हें सुनामी कहते हैं। 'सुनामी' लहरों ने गांव के गांव लील लिए। जावा और सुमात्रा के तट पर बसे लगभग 34000 लोग डूब गए तथा 2000 से अधिक लोग जलकर मर गए। तम्बोरा ज्वालामुखीय विस्फोट के बाद सन् 1883 के क्राकाटाऊ के विस्फोट के कारण सबसे अधिक मौते हुई थी। (देखिए सारणी सं० 2.1)

चित्र 2.3: सन् 2010 में आइसलैंड के इजीस पफाला ज्वालामुखी से निकलती हुई राख

प्रकृति के कुछ दृश्यों में से ज्वालामुखी उद्गार देखना मनोरंजक और प्रसन्नतादायक होता है, लेकिन सन् 1883 के क्राकाटाऊ जैसे प्रचण्ड उद्गार, आस-पास के पर्यावरण को तहस-नहस कर देते हैं तथा निकट के भू-भाग की शक्ल ही बदल देते हैं। एक ज्वालामुखी को परिभाषित करते हुए कहा जाता है कि यह भूपटल में एक छिद्र या विवर है, जिससे पिघली शैलें, राख, गैसें आदि निकलती हैं जबिक ज्वालामुखी उद्गार में वे सब प्रिक्रयाएं शामिल हैं, जिनसें पृथ्वी के अभ्यन्तर से मैग्मा और वाष्पशील पदार्थ निकलकर धरातल पर आ जाते हैं। भूपटल के नीचे मैग्मा बड़े भारी दबाव में रहता है। भूपटल की गहराई में भ्रंश और जोड़ बन जाते हैं और नीचे मैग्मा तक पहुँच जाते हैं। इन्हीं से होकर मैग्मा ऊपर उठता है और भूपटल पर आ जाता है। मैग्मा दरारों से होकर ऊपर आता है बुलबुले बनाता है और इससे ज्वालामुखी उद्गार होता है। क्राकाटाऊ का उद्गार इतना विस्फोटक उद्गार था कि इससे पिघली और ठोस शैलों के टुकड़े प्रचण्डता से बाहर निकल कर हवा में पहुँच गए। इसके विपरीत निःसरण उद्गारों में पिघली हुई चट्टानें अपेक्षाकृत कम प्रचण्डता से धरातल पर नदी की जल धारा की तरह बहने लगती हैं।

सारणी 1.2 प्रसिद्ध उद्गारों का परिमाण और तीव्रता

ज्वालामुखी	देश	वर्ष	कुल परिमाण (किग्रा)	उच्च उद्गार के समय बादल की (राख के) ऊँचाई (किमी)
तम्बोरा	इण्डोनेशिया	1815	2 x 10 ¹⁴	43
ताउपो	न्यूजीलैंड	180	8 x 10 ¹³	51
नोवारुपता	संयुक्त राज्य अमेरिका	1912	3 x 10 ¹³	25
क्राकाटाऊ	इण्डोनेशिया	1883	3 x 10 ¹³	25
विसूवियस	इटली	79	6 x 10 ¹²	32

उद्गारों की शैली में भिन्नता धरातल के नीचे मैग्मा के रासायनिक और तापमान के अंतर का परिणाम है। जब बैसाल्टी मैग्मा धरातल पर आता है, तो यह निःसरण उद्गार का रूप धारण कर लेता है। अपेक्षाकृत ठंडा तथा चिपचिपा सिलिका मैग्मा विस्फोट पैदा कर सकता है। ज्वालामुखी से निकलने वाले पिघले हुए पदार्थ जो हवा में आने के पश्चात् ठोस बन जाते हैं तथा लावा के इन ठोस टुकड़ों को पाइरोक्लास्टी (ज्वलखण्डाश्म), पदार्थ कहते हैं। इनके आकार भिन्न होते हैं। ज्वालामुखी राख से लेकर कंकड़ के आकार के अंगार (2-4 मिमी), ज्वालामुखी अश्मक (4-64

मिमी), शिलाएं (764 मिमी) इसमें शामिल हैं। इसमें बड़े आकार के ज्वालामुखी बम, चीका, मिट्टी, और गाद भरी राख भी शामिल हो सकती है।

क्राकाटाऊ विस्फोटों में अत्यधिक गरम भाप ने पाइराक्लास्टी (ज्वलखण्डाश्मि) पदार्थों को 100 किमी प्रति घंटा की गित से 40 किमी की ऊँचाई तक उछाल दिया। ज्वालामुखी विस्फोट सूचकांक पर इस विस्फोट की रेटिंग छः दी गई है। विस्फोट का परिमाण 3x10¹³ था (देखिए सारणी सं० 2.2)। अनुमान है कि इसका परिमाण 200 मेगाटन टी.एन.टी. के विस्फोटक बल के बराबर था। उच्च उद्गार के समय (राख के) बादल की ऊँचाई की प्रथम पाँच ज्वालामुखीय विस्फोटों में गिनती की गई है। विस्फोटों ने अनुमानित 45 घन किलोमीटर के बराबर मलबा वायुमण्डल में उछाला था, जिससे 442 किमी० तक आसमान में अंधकार छा गया था। इसके निकट के क्षेत्रों में तो तीन दिन तक सूरज ही नहीं दिखाई पड़ा था। अप्रैल 2010 में आइसलैंड के ज्वालामुखी 'इजियाफालाजोकुल' से निकली राख और गैस के बादल (प्लूयम्स) 10 किमी की ऊँचाई तक पहुँच गए थे। इसने कई महीनों तक 9.5 अरब घन फीट राख उगली, जिससे कई दिनों तक यूरोप का वायु यातायात और उड़ाने ठप हो गई थी।

ज्वालामुखीय सुनामियाँ

कभी-कभी ऐसा भी माना जाता है कि सुनामियाँ (विशालकाय ज्वारीय लहरों के रूप में भी जानी जाती हैं) बड़ी भूकम्पीय घटनाओं के कारण ही बनती हैं। तथापि पृथ्वी पर देखी गईं सबसे अधिक विनाशकारी सुनामी लहरों समेत लगभग 5 प्रतिशत ऐतिहासिक सुनामियाँ ज्वालामुखीय उद्गारों या ज्वालामुखीय प्रक्रियाओं के द्वारा ही पैदा हुई थीं। विगत 250 वर्षों में संसार के महासागरों में 90 से अधिक सुनामियाँ ज्वालामुखियों द्वारा पैदा की गईं थीं। यद्यपि ज्वालामुखीय सुनामी अपेक्षाकृत कम आती हैं, लेकिन ये सुनामियाँ बहुत अधिक चिन्ताजनक होती हैं, क्योंकि इन की उत्पत्ति कुछ विशेष होती है, जो कोई चेतावनी नहीं देती तथा यह तट पर बसी बस्तियों को काफी दूरी तक नष्ट कर सकती हैं। कुछ ऐसी उल्लेखनीय आपदाएँ हैं जो ज्वालामुखीय सुनामियों के कारण पैदा हुईं थीं (देखिए सारणी सं० 2.3)। क्राकाटाऊ उद्गार के द्वारा बनी लहरों की ऊँचाई लगभग 35 मीटर थी और ये 800 किमी० दूर तक पहुँच गईं थीं। जिससे यह अर्वाचीन इतिहास की सबसे अधिक विनाशकारी घटना बन गई थी।

सारणी 2.3: प्रमुख ज्वालामुखीय सुनामियाँ

<u>ज्वालामु</u> खी	देश	वर्ष	लहर की ऊँचाई (मीटरों में)	दूरी तय की (किलोमीटर)
उंजेन	जापान	1782	10 - 55	20-50
तम्बारो	इण्डोनेशिया	1815	> 10	7100
क्राकाटाऊ	इण्डोनेशिया	1883	5-35	800
सेंट आगस्टाइन	संयुक्त राज्य अमेरिका	1883	7-9	7100
माउंट सेंट हेलेंस	संयुक्त राज्य अमेरिका	1980	260	4

म्रोत : सिगुरडौसां हरालदुर (संस्करण) ज्वालामुखी विश्वकोश

ज्वालामुखीय गतिविधि वास्तव में पट्ट विवर्तानिकी से संबंधित है। अधिकतर ज्वालामुखी, अपसारी या अभिसारी पट्ट सीमाओं के निकट पाए जाते हैं। अधिकतर विस्फोटक ज्वालामुखी संसार के क्षेपण मंडलों में स्थित हैं। ज्वालामुखियों की शृंखलाएँ और गहरी महासागरीय खाइयाँ इन क्षेपण मंडलों की विशेषताएं हैं।

इण्डोनेशिया में 130 से अधिक सिक्रिय ज्वालामुखी हैं। संसार में सबसे अधिक ज्वालामुखी यहीं पर हैं। ये इण्डोनेशिया द्वीप चाप तंत्र की धुरी हैं, जिसका निर्माण भारतीय-आस्ट्रेलियाई पट्ट के उत्तर पूर्वी क्षेपण के द्वारा हुआ है।

चित्र २.४: इण्डानेशिया भ्रंश मंडल में और इनके चारों ओर स्थित ज्वालामुखी

इनमें से अधिकतर ज्वालामुखी चाप के दो सबसे बड़े द्वीपों जावा और सुमात्रा के स्थलाकृति शीर्ष के साथ-साथ स्थित हैं। सुंडा जल सन्धि उपरोक्त दोनों द्वीपों को अलग करती है। यह जल सन्धि द्वीपीय चाप ज्वालामुखी की धुरी में एक स्पष्ट मोड़ पर स्थित है। क्राकाटाऊ सुंडा जल सन्धि में स्थित अनेक ज्वालामुखीय द्वीपों में से एक है जो उत्तर-उत्तरपूर्व की ओर झुकते हुए भ्रंश मंडल के ऊपर स्थित है। (देखिए चित्र सं० 2.4)

संसार के अधिकतर बहुचर्चित ज्वालामुखी मिश्रित शंकु हैं, जिनका निर्माण कभी निःसरण और कभी विस्फोटकों से हुआ है। इनकी निर्माण सामग्री लावा और पाइरोक्लास्टी पदार्थों का सम्मिश्रण है।

सारणी 2.4: प्रमुख मिश्रित शंकु ज्वालामुखी

प्यूजीयामा	जापान
कोटोपैक्सी	इक्वेडोर
विसुवियस	इटली
एटना	इटली
माउण्टरे नियर	सं०रा० अमेरिका
माउण्ट सेंट हेलेना	सं०रा० अमेरिका
क्राकाटाऊ	इण्डोनेशिया

म्रोत : सिगुरदौसां हैराल्दुर (संस्करण) ज्वालामुखियों का विश्वकोश

चित्र 2.5: 1883 के विस्फोट के पहले और बाद की भू-आकृति

उद्गार से पहले का क्राकाटाऊ तीन ज्वालामुखियों के मिलने से बना था, जो सुमात्रा के ज्वालामुखियों के समान्तर उत्तर-उत्तर पश्चिम दिशाओं की सीध में था। उत्तर से दक्षिण की ओर इनके नाम हैं- परबोएवतन, डानन और रकाटा। अवलोकन से लगता है कि उद्गार के समय परबोएवतन, डानन और उत्तर का आधा रकाटा मैग्मा के निकलने से खाली हुए प्रकोष्ठ में धंस गए (देखिए चित्र सं० 2.5)। इस प्रकार एक अन्तः समुद्री समुद्रीकुण्ड (काल्डरा) बन गया जिससे द्वीप का दो तिहाई भाग नष्ट हो गया। 1927 के बाद से हुए उद्गारों के द्वारा 1883 के काल्डरा के मध्य अनक क्राकाटाऊ नामक एक नया शंक् बन गया।

अनक क्राकाटाऊ

सन् 1927 में जावा में रहने वाले मछुआरों ने सूचित किया कि क्राकाटाऊ के धंसे हुए काल्डरा से भाप और मलबा निकल रहा है। 12 अगस्त 1930 तक नया ज्वालामुखी एक द्वीप में बदल गया तथा इसे नाम दिया गया अनक क्राकाटाऊ "क्राकाटाऊ का बच्चा"। सन् 1959 में ज्वालामुख विवर का

घेरा 152 मीटर ऊँचा हो गया। 1959 और 1963 की अविध में हुए उद्गारों की शृंखला ने अनक क्राकाटाऊ के आकार (स्वरूप) को बहुत बदल दिया। नवम्बर 1992 में अनक क्राकाटाऊ विशेष रूप से सिक्रिय था। इसमें प्रतिदिन दो बार लावा निकलता था तथा 1000 और 4000 स्ट्राम्बोली विस्फोट होते थे। 1990 में और 2002 तक स्ट्राम्बोली गतिविधि की गौण दशा देखी गई। इसके बाद अनक क्राकाटाऊ शांत अवस्था में पहुँच गया। बस! कभी-कभी गैस निकलती थी। अक्टूबर 2007 में गतिविधि की एक नई अवस्था की शिक्तशाली स्ट्राम्बोली उद्गारों के साथ (शायद वल्कैनी) शुरूआत हुई। यह गतिविधि 2008 में बन्द हो गई और अप्रैल में उद्गार पुनः प्रारंभ हो गए।

क्राकाटाऊ के विशाल ज्वालामुखीय उद्गारों के बाद 100 वर्षों तक द्वीप ज्यों का त्यों पड़ा रहा, उस पर कोई बस्ती नहीं बसाई गई। आजकल द्वीप को हरे-भरे उष्ण किटबंधीय वर्षा वनों ने ढक लिया है, इनमें वृक्षों की सघन छतरी दूर से दिखाई पड़ती है। यहाँ वर्षा-वन पुनः बड़ी तेजी से बढ़े हैं। सन् 1884 से 1930 तक डच सर्वेक्षणों में उष्णकिटबंधीय पेड़-पौधों और जीव-जन्तुओं के पुनः पाए जाने की जानकारी दी गई है। ए० अन्स्ट ने अपने 1906 के अभियान का विवरण "क्राकाटाऊ के ज्वालामुखीय द्वीप की वनस्पति" नाम अध्ययन में दिया है, जिसमें वनस्पति द्वारा की गई उल्लेखनीय

प्रगति के विषय में बताया गया है। द्वीप के दक्षिणी भाग में बालू – तट से लेकर चोटी तक तथा तीव्र ढाल तक हरे – भरे पेड़ों से ढके थे। उन्होंने भूरे – हरे अनेक 'कैसुआरिना' पेड़ों की पहचान की थी। निम्न भूमि क्षेत्र में इक्का – दुक्का पेड़ और झाड़ियाँ देखी गईं थी। उन्हों विशेष प्रक्रम के तंतु गुच्छ पेड़ भी मिले जिनमें 'अंडाकार फल' या 'कारबीना ओडोलम' तंतुगुच्छ ताड़ या 'नीपा फ्रक्टीकन्स, पंडामस, बारोगटोरिया स्पेसियोसा' के चतुर्पार्श्व बड़े फल भी शामिल थे। सन् 1998 में क्राकाटाऊ में आर्किड की चालीस प्रजातियों का विवरण भी रिकार्ड किया गया था।

चित्र 2.7: क्राकाटाऊ द्वीप में और उसके आस-पास उष्णकटिबंधीय वर्षा वन

चित्र २.८: क्राकाटाऊ मे पारि-पर्यटन

अनक क्राकाटाऊ का वन्य जीवन बहुत विवध है। इसमें 204 प्रजातियाँ कवक की, 13 पर्णांग और 25 प्रजातियों के पौधे तथा चीड़ के वृक्ष शामिल हैं। जीव-जन्तुओं में प्रमुख हैं- मकड़ी, कीट, चूहे, सांप और छिपकलियाँ। लेकिन द्वीप के लगभग वनों में सबसे अधिक संख्या वृक्षों की तीन प्रजातियों की है।

उपरोक्त विवरण से पता चलता है कि लगभग 100 वर्ष बीत जाने के बाद भी वन वंशक्रम की प्रारंभिक अवस्थाओं में हैं। क्राकाटाऊ द्वीपों में अब रकाटा या क्राकाटाऊ बेसन (विशाल क्राकाटाऊ), पानजंग या क्राकाटाऊ केसिल (छोटा क्राकाटाऊ), सरतुंग और अनक क्राकाटाऊ शामिल हैं। इनमें से रकाटा, सरतुंग और पानजंग, पुराने माउण्ट क्राकाटाऊ के अवशेष हैं, लेकिन अनक क्राकाटाऊ एक सिक्रय ज्वालामुखी है। अपने विस्फोट के साथ जुड़ीं मौतों की संख्या के कारण स्थानीय निवासियों में क्राकाटाऊ आतंक का प्रतीक बन गया था। लेकिन अब यह घरेलू और अंतर्राष्ट्रीय पर्यटकों के लिए पर्यटन का प्रसिद्ध गन्तव्य बनता जा रहा है। सन् 1991 में यूनेस्को ने उजुंग कुलुन राष्ट्रीय उद्यान और क्राकाटाऊ द्वीप को समन्वित रूप से प्राकृतिक विश्व धरोहर स्थल

के रूप में मान्यता प्रदान की है। द्वीप का नाम इण्डानेशिया के लिए 'पर्यटन प्रतीक' बन गया है। क्राकाटाऊ 'पारि-पर्यटन' के झंडे के नीचे अनेक पर्यटन संचालक क्राकाटाऊ के आस-पास स्थित अनेक गन्तव्यों के लिए पारि-पर्यटन का संचालन कर रहे हैं। सिक्रिय ज्वालामुखी को देखने के लिए अनक क्राकाटाऊ जाने वाले घरेलू और अंतर्राष्ट्रीय पर्यटकों की संख्या दिन-प्रतिदिन बढ़ती ही जा रही है। अनक क्राकाटाऊ पर्यटकों को प्रकृति जन्य उल्लेखनीय घटनाओं को देखने का अवसर प्रदान कर रहा है।

ज्वालामुखीय उद्गारों का सामना कैसे करें

विद्यार्थियों को यह जानना ज़रूरी है कि ज्वालामुखी गतिविधियाँ प्राकृतिक तंत्र या चक्र का एक अंग है, जिनसे पहले तो विनाश होता है और उसके बाद पुनर्निमाण और पुनर्वास का मार्ग प्रशस्त होता है। इसलिए हम सभी के लिए यह बहुत महत्वपूर्ण है कि हम चौकस रहें और पास-पड़ोस में होने वाली प्रत्येक ज्वालामुखीय गतिविधि से निपटने के लिए तैयार रहें। विद्यार्थी अपने आपको अपने परिवारों को ज्वालामुखीय उद्गारों के खतरों से बचाने के लिए अनेक उपाय कर सकते हैं। अपने-आपको और अपने परिवार को बचाने का सबसे अच्छा तरीका है, स्थानीय अधिकारियों की सलाह से काम करना। स्थानीय अधिकारी ही आपको बताएँगें कि ज्वालामुखी उद्गारों के लिए कैसे तैयारी करें। भिन्न परिदृश्यों में ज्वालामुखी उद्गारों से अपने आपको बचाने के अलग-अलग तरीके हैं।

यदि लावा प्रवाह आपकी ओर आ रहा है:

- 🖈 तुरंत उस क्षेत्र को छोड़ दें।
- यदि उपलब्ध हो, तो शीघ्रता से हटने के लिए वाहन का उपयोग करें।

यदि आप घर के अंदर हैं:

चित्र 2.9

- 🖈 सभी खिड़िकयाँ, दरवाजे और चूल्हे आदि बंद कर दें।
- 🖈 बिजली के सभी उपकरण, गरम करने वाले तथा वातानुकलन तंत्र बंद कर दें।
- 🖈 पालतू जीवों की भी शरण दीजिए।

यदि आप बाहर हैं:

- 🖈 बाहर ही कोई सुरक्षित स्थान ढूंढ लें।
- 🖈 यदि गिरती हुई चट्टानों के बीच फंस गए हैं तो अपने सिर को बचाने का यत्न करें।
- 🖈 शरीर के जले हुए अंगों का तुरंत उपचार करें।
- 🖈 उस क्षेत्र से तुरंत चले जाएं।

अपने आपको राख की वर्षा से बचाएं:

- 🖈 पूरी बांह की कमीज और लंबी पैंट पहनें।
- ऑखों को बचाने के लिए चश्मा पहनें।
- धूल से बचने का मुखौटा पहने (देखिए चित्र सं० 2.10) या सांस लेने में मदद के लिए गीले कपड़े से अपना मुँह ढक लें।

चित्र 2.10

🖈 कार और ट्रक के इंजन बंद कर दें।

'आपदा न्यूनीकरण अंतर्राष्ट्रीय दिवस' प्रतिवर्ष 13 अक्टूबर को मनाया जाता है। इसका प्रारंभ आपदा न्यूनीकरण सचिवालय के लिए संयुक्त राष्ट्र द्वारा अंतर्राष्ट्रीय रणनीति के तहत किया गया है। प्रतिवर्ष इसी दिन सारे संसार में अनेक कार्यक्रमों का आयोजन किया जाता है। इनका उद्देश्य प्राकृतिक आपदाओं जैसे भूकंप, बाढ़, सुनामी, आग, ज्वालामुखीय उद्गारों समेत सभी वैश्विक आपदाओं के बारे में समझ पैदा करना है। यही नहीं, आपदाओं के विनाशकारी प्रभावों को कम करने के लिए तैयार की गई व्यवस्थाओं के बारे में जागरूक करना भी इसमें शामिल है।

ज्वालामुखीय उद्गार और इसके प्रभावों को जानने के लिए स्कूल में प्रदर्शनों और भाषणों का आयोजन करने की आवश्यकता है, क्योंकि सिक्रय ज्वालामुखी वाले देशों में भ्रमण संभव नहीं है। इस विनाशकारी जिटल प्राकृतिक परिघटना के विषय में अनुरूपण द्वारा छात्रों को प्रशिक्षित करने की आवश्यकता है। इस आपदा और इसके प्रभावों की जानकारी छोटे-छोटे चरणों में दी जानी चाहिए। इसके लिए नाटकों में अनुरूपण दृश्यों को दिखाया जा सकता है। ज्वालामुखी उद्गार एक ऐसी प्राकृतिक परिघटना है, जिस पर नियंत्रण नहीं किया जा सकता, लेकिन तैयारी के द्वारा इसके प्रभाव को कम किया जा सकता है। यह मानव को हमेशा याद दिलाता है कि उन्हें इन प्राकृतिक प्रक्रियाओं और विकास तथा पुनरुत्पादन के तंत्रों में हस्तक्षेप नहीं करना चाहिए लेकिन जहाँ तक संभव हो इनके साथ सामंजस्य बनाकर रहने का प्रयत्न करना चाहिए।

चित्र २.11: अनुरूपण द्वारा ज्वालामुखी उद्भव

संदर्भिका :

- 1. http://www.livescience.com/28186-krakatoa.html
- 2. http://www.asu.edu/courses/art345/2009/santiago_j/web/oceanicmapping/
- 3. Sigurdsson H. eds. Encyclopedia of Volcanoes, Academic Press, London, 1999
- 4. http://www.belfasttelegraph.co.uk/news/local-national/volcanic-ash-could-ground-planes-for-days-28530336.html
- 5. http://www.geology.sdsu.edu/how_volcanoes_work/Krakatau.html
- 6. http://www.geology.sdsu.edu/how_volcanoes_work/Krakatau.html
- 7. http://www.swisseduc.ch/stromboli/perm/krakatau/krakatau-from-rakata-en.html?id=11
- 8. http://krakatau.page4.me/_blog/2011/
- $9. \quad http://www.krakataudiscovery.com/Krakatau-volcano.htm \\$
- 10. http://ww1.texas.aaa.com/tx_journey/2010-jul-aug/Pages/travel-smart.aspx

- 11. http://www.bt.cdc.gov/disasters/volcanoes/during.asp
- 12. http://blog.inkleinations.com/2011/11/7-wonders-science-center.html

आभारोक्ति :

- Sigurdsson H. eds. Encyclopedia of Volcanoes, Academic Press, London, 1999
- http://www.geology.sdsu.edu/how_volcanoes_work/Krakatau.html
- Weil, A. Disasters: Volcanoes, Saddleback Educational Publishing, California, 2004

नम्ना प्रश्न :

- 1. "ज्वालामुखीय उद्गार पृथ्वी की अत्यधिक आश्चर्यजनक घटनाओं में से हैं।" समीक्षा कीजिए।
- 2. "अधिकतर विस्फोटक ज्वालामुखी संसार के क्षेपण मंडलों में पाए जाते हैं। ज्वालामुखियों की शृंखलाएं और गहरी महासागरीय खाइयाँ क्षेपण मंडलों की विशेषताएँ हैं।" संसार के सामान्य तथा क्राकाटाऊ के विशेष संदर्भ में ज्वालामुखीय उद्गारों में पट्ट क्षेपण की भृमिका की व्याख्या कीजिए।

अंक योजना :

- 1. निम्नलिखित तथ्यों को बताने वाले उत्तरों की अनुशंसा की आवश्यकता है:
 - ☆ सारे संसार में विभिन्न ज्वालामुखीय उद्गारों के समय (राख के) बादलों की ऊँचाई का वर्णन।
 (1 अंक)
 - ☆ ज्वालामुखियों से निकलते पाइरोक्लास्टी पदार्थों टेफा, मैग्मा, गैसों, कीचड़ आदि का वर्णन। (2 अंक)
 - 🔀 अनक क्राकाटाऊ के निकट स्ट्राम्बोली गतिविधि का स्पष्टीकरण। (2 अंक)
- 2. निम्नलिखित तथ्यों के बताने वाले उत्तरों की अनुशंसा की आवश्यकता है:
 - प्रशान्तीय अग्निवलय की रूपरेखा बताते हुए संसार की अभिसरण पट्ट सीमाओं की समीक्षा कीजिए। (3 अंक)
 - ☆ क्राकाटाऊ समेत इण्डानेशिया के भ्रंश मंडल में और उसके आस-पास के ज्वालामुिखयों की व्याख्या कीजिए। (विस्तृत व्याख्या कीजिए) (2 अंक)