Practice Questions SESSION: 2022-23 Class: XII Subject: CHEMISTRY (043)

Maximum marks: 70

Time Allowed: 3 hours

General instructions:

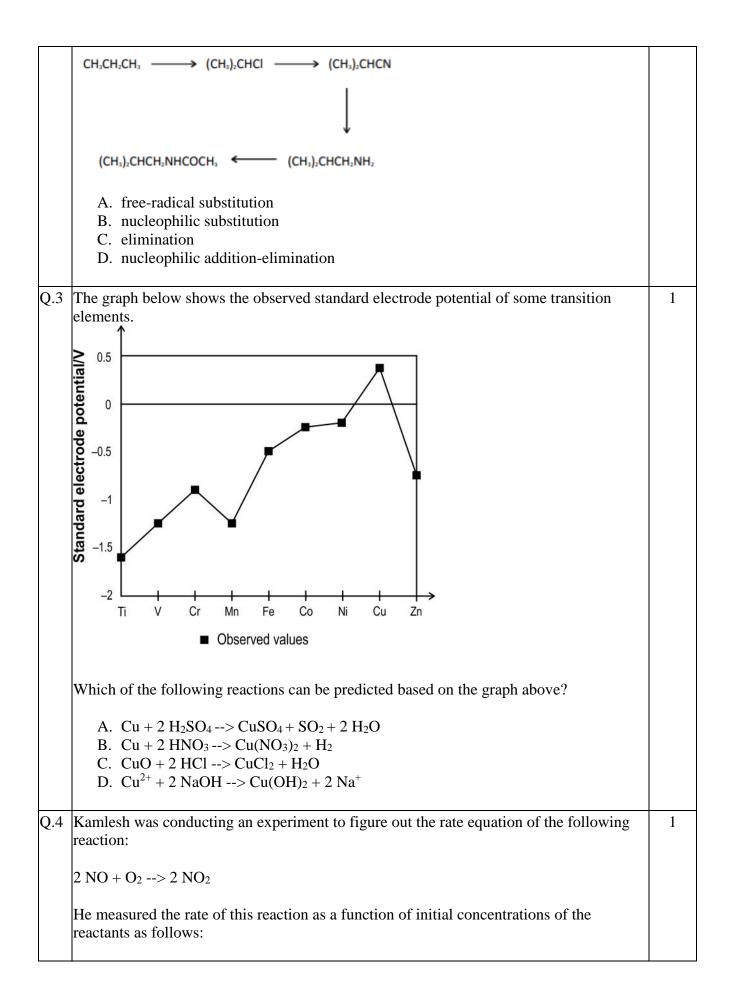
Read the following instructions carefully.

a) There are 35 questions in this question paper with internal choice.

b) SECTION A consists of 18 multiple-choice questions carrying 1 mark each.

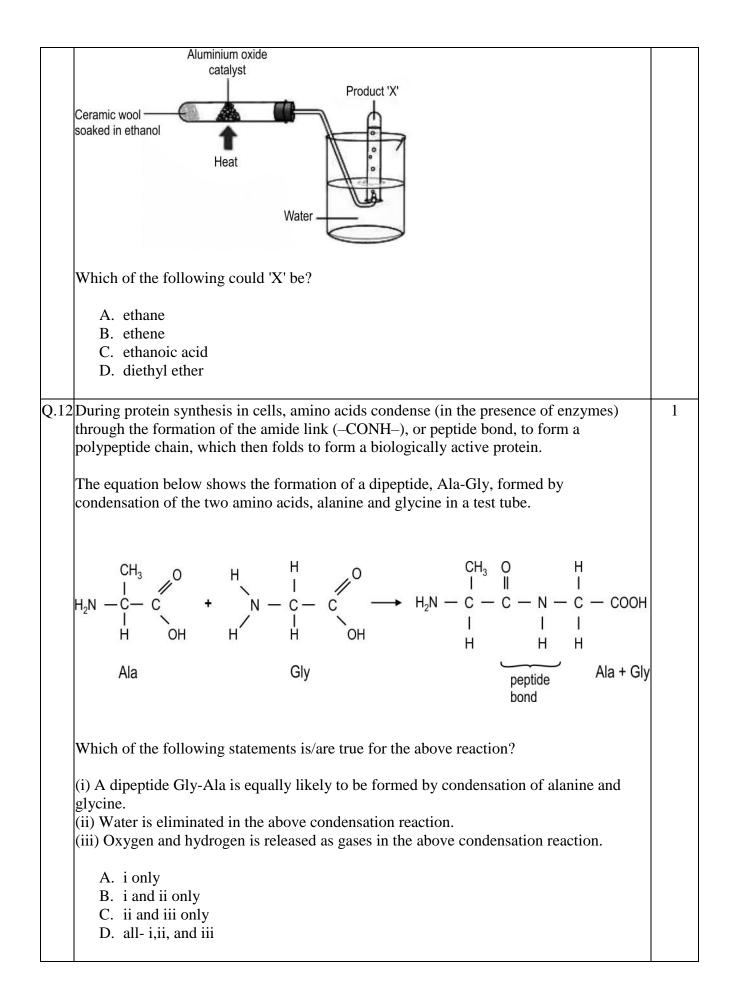
c) SECTION B consists of 7 very short answer questions carrying 2 marks each.

d) SECTION C consists of 5 short answer questions carrying 3 marks each.

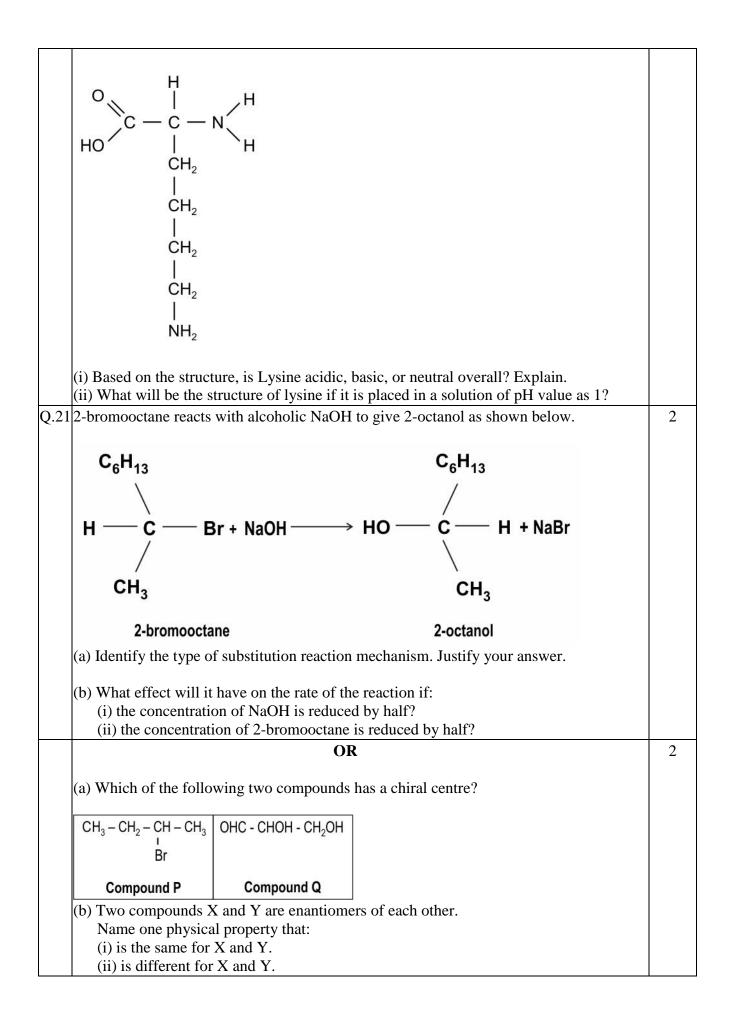

e) SECTION D consists of 2 long answer questions carrying 4 marks each.

f) SECTION E consists of 3 long answer questions carrying 5 marks each.

g) All questions are compulsory.


h) Use of log tables and calculators is not allowed

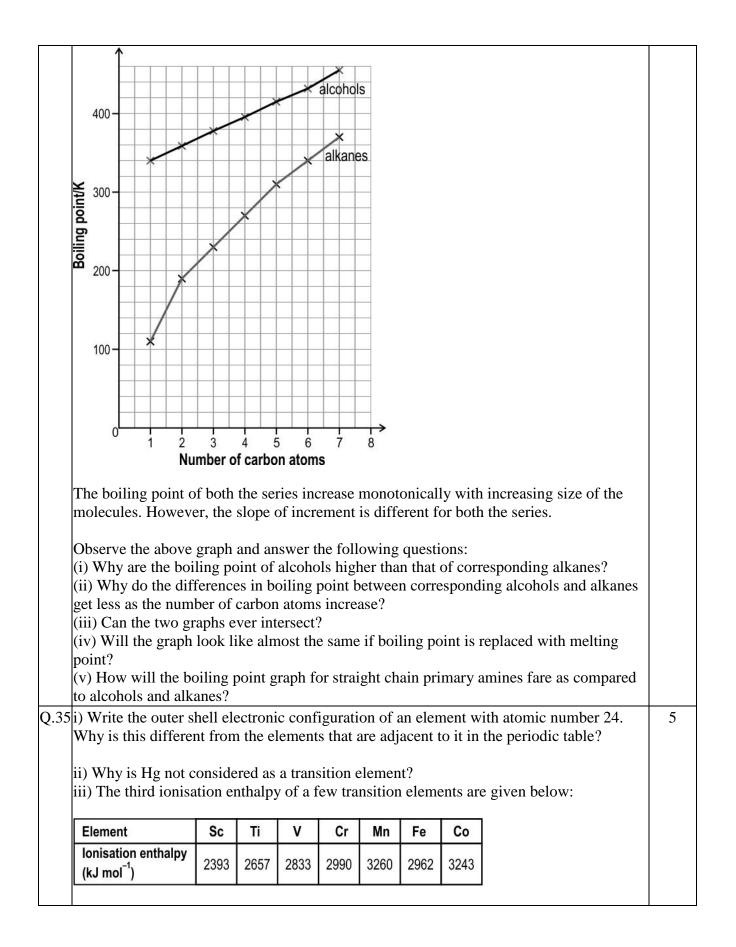
Q. No	Question	Marks
	SECTION A	
	The following questions are multiple-choice questions with one correct answer. Each	
	question carries 1 mark. There is no internal choice in this section.	
Q.1	De-icing is the process of removing snow, ice or frost from a surface. In extremely cold regions, car windows get covered by ice reducing the visibility. The image below shows the de-icing of the window of a car during extreme cold using a fluid.	1
	Which of the following compounds could be present in the de-icing fluid used above?A. formaldehyde	
	B. phenol	
	C. propan-2-ol	
	D. acetic acid	
Q.2	Which of the following reaction mechanism is not involved in the given reaction sequence?	1


Q .6	For a c	certain reaction	X, rate = $0.7 Z_{AB} e^{-E} A^{/RT}$.			1
	It is se	en that for ano	ther reaction, Y, rate = $Z_{AB}e$	$e^{-E}A^{/RT}$.		
	Based	on the above,	what can be said about react	ions X and Y?		
	B. C.	Both the reac Reaction X in involves com Reaction X in	tions involve complex mole tions involve simple molecu ivolves simple molecules or plex molecules. ivolves complex molecules, atomic species.	les or atomic species. atomic species, while r		
Q.7		al ion M ⁿ⁺ form ate ligand.	ns a complex ion of formula	$[ML_2]^{(n-4)+}$ where L rep	presents a	1
	Which	of the followi	ng could be the charge on th	e ligand L?		
	B. C.					
<u>)</u> .8			ows different benzene deriva positions along with the rate Main products of mononitration	e of nitration relative to Rate of nitration relative		1
	A	CH3	$ \bigcirc \xrightarrow{CH_3} NO_2 \qquad \bigcirc \xrightarrow{CH_3} NO_2 \qquad \bigcirc $	to benzene Faster	-	
	в	phenol OH		Slower		
	с	nitrobenzene	NO ₂ NO ₂	Faster	_	
	D	COOH	COOH NO2	Slower	-	
	Which reactio		ng row shows atleast one IN	ICORRECT description	about the	

C. D.	only C only B and C only C and D			
	te constants of a read tively.	ction at 400 K and 6	00 K are 5 x 10^{-3} s ⁻¹ and 8 x 10^{-3} s ⁻¹	
What	extra piece of inform	nation is needed to ca	alculate the value of A (frequency factor)?	
(Acco	rding to the Arrheniu	is equation, rate con	stant is given by, $k = Ae^{-E_a/RT}$.)	
В. С.	the order of the read the activation energy the initial concentra [No extra informati available]	gy of the reaction ation of the reactants	s be calculated with the information	
The co	ompound [Co(NH ₃) ₅	Cl]SO ₄ is isomeric v	vith the compound [Co(NH ₃) ₅ SO ₄]Cl.	
Which compo	of the following rov ounds?	ws correctly represen	with the compound $[Co(NH_3)_5SO_4]Cl.$	
Which compo	of the following rov	ws correctly represen		
Which compo	n of the following rov ounds? [Co(NH3)5Cl]SO4	ws correctly represer		
Which compo Rows A	n of the following rov ounds? [Co(NH3)5Cl]SO4 +2	ws correctly represent [Co(NH3)5SO4]Cl +3		
Which compo Rows A B	of the following rov bunds? [Co(NH3)5Cl]SO4 +2 +3	<pre>ws correctly represen [Co(NH₃)5SO₄]Cl +3 +2</pre>		
Which compo A B C D A. B. C.	n of the following rov bunds? [Co(NH3)5Cl]SO4 +2 +3 +2	[Co(NH3)5SO4]Cl +3 +2 +1		

-	Zirconium (Zr, Atomic number 40) and Hafnium (Hf, Atomic number 72) are transition series metals of group 4. They are found together in nature and are difficult to separate from each other.	1
	Which of the following is the reason for the above?	
	A. The almost identical radii of the atoms.B. The elements belong to the same group.C. The elements belong to adjacent periods.D. The presence of the same number of unpaired electrons in both the elements.	
	Which of the following would be among the products of the reactions between ammonia reacts with bromoethane?	1
	(i) $CH_3CH_2NH_2$ (ii) $(CH_3CH_2)_2NH$ (iii) $(CH_3CH_2)_3N$ (iv) $(CH_3CH_2)_4N^+Br^-$	
	 A. only i B. only i and ii C. only i, ii, and iii D. all- i, ii, iii and iv 	
Q.15	Given below are two statements labelled as Assertion (A) and Reason (R).	1
	Assertion (A): Dimethyl amine has higher boiling point than trimethyl amine. Reason (R): The molecular mass of trimethyl amine is relatively higher than that of dimethyl amine.	
	Select the most appropriate answer from the options given below:	
	A. Both A and R are true and R is the correct explanation of A.B. Both A and R are true but R is not the correct explanation of A.C. A is true but R is false.D. A is false but R is true.	
Q.16	Given below are two statements labelled as Assertion (A) and Reason (R).	1
	Assertion (A): A silver mirror can be created at the wall of a test tube using ethanal. Reason (R): Ethanal can react with Fehling's solution	
	Select the most appropriate answer from the options given below:	
	A. Both A and R are true and R is the correct explanation of A.B. Both A and R are true but R is not the correct explanation of A.C. A is true but R is false.D. A is false but R is true.	
		1

Q.17	Given below are two statements labelled as Assertion (A) and Reason (R).	1
	Assertion (A): At a constant temperature, the dissociation constant of chloroethanoic acid will be higher than that of propanoic acid.	
	Reason (R): Higher the number of carbon atoms in a compound, lower will be	
	the dissociation constant.	
	Select the most appropriate answer from the options given below:	
	A. Both A and R are true and R is the correct explanation of A.	
	B. Both A and R are true but R is not the correct explanation of A.C. A is true but R is false.	
	D. A is false but R is true.	
0.18	Given below are two statements labelled as Assertion (A) and Reason (R).	1
	Assertion (A): At room temperature, propan-2-ol and 2-methylpropan-2-ol, when heated with acidified potassium dichromate, slowly turns the colour of orange dichromate to green.	
	Reason (R): Secondary and tertiary alcohols are readily oxidised to aldehydes which gets oxidised to acids.	
	Select the most appropriate answer from the options given below:	
	A. Both A and R are true and R is the correct explanation of A.	
	B. Both A and R are true but R is not the correct explanation of A.C. A is true but R is false.	
	D. Both A and R are false.	
	SECTION B This section contains 7 questions with internal choice in two questions. The following	
	questions are very short answer type and carry 2 marks each.	
Q.19	At high temperatures, ethyl chloride produces HCl and ethylene by the following first order reaction:	2
	$CH_3CH_2Cl> HCl + C_2H_4$	
	In an experiment, when the initial concentration of ethyl chloride was 0.01 M, the rate of the reaction was found to be 1.6×10^{-8} M/s.	
	What will be the rate of reaction if the initial concentration of ethyl chloride is 0.07 M?	
Q.20	Pineapple contains a protease enzyme that breaks down proteins. If you try to make a jelly with fresh chunks of pineapple, the jelly won't set but it would set if you use canned	2
	pineapple. Explain.	
	OR	2
	The chain structure of Lysine is shown below.	
L		



	B C D E	$\frac{\text{PtCl}_{4} \text{-} \text{3}\text{NH}_{3}}{\text{PtCl}_{4} \text{-} \text{3}\text{NH}_{3}}$ $\frac{\text{PtCl}_{4} \text{-} \text{3}\text{NH}_{3}}{\text{PtCl}_{4} \text{-} \text{2}\text{NH}_{3}}$	3 2 0	2 1 0		
	С	PtCl ₄ •4NH ₃	222	222		
	В		24	222		
		PtCl ₄ •5NH ₃	4	3	1	
	A	PtCl ₄ •6NH ₃	5	4		
	Compound	Formula	Total number of free ions in the formula	Number of free Cl ⁻¹ ions in the formula		
	compounds consisting of platinum, chlorine, and ammonia. Some of the properties of these compounds are shown below in the table.					
				clarifying the structures of the fiv	ve 3	
	the reduction o	f either an alco	ohol or an aldehyde? Why			
	predominate in	benzaldehyde	. Explain why.	-		
-	benzene (C ₆ H ₆))? Give an exp	lanation for your answer.			
			pe and carry 3 marks each ore reactive to electrophil	ic substitution reactions than	3	
	This section contains 5 questions with internal choice in two questions. The following					
		лээишс IX _с – 4	SECTION C			
		nany moles of	ethyl ethanoate and ethan	ol are allowed to reach equilibriu loic acid are present at	111	
	the forward dir	rection.	-	ets formed to push the reaction in		
-	catalyst is a rev	versible reaction	n.	-		
		-	d for completion of 99% of acid with an alcohol in th	be presence of mineral acid as	2	
	of Cu^{2+} increas		n(s). l to have a half-life of 1.15	5×10^4 s	2	
	 (i) How will the value of E^o change if the concentration of Cu²⁺ increases? (ii) Will the conversion of Cu²⁺ to Cu become more or less feasible if the concentration 					
	equation such as: $Cu^{2+}(aq) + 2e^{>} Cu(s); E^{o} = +0.34 v$					
Q.23	The half equati	on for a redox	•	uilibrium between two sides of a	n 2	
	(ii) When NaOH solution is added to aqueous copper (II) sulphate solution, hydroxide ions displace water molecules forming a pale blue precipitate, X. If excess ammonia is now added, water molecules and hydroxide ions are exchanged by ammonia molecules, forming a deep blue solution, Y. Identify X and Y.					
	geometrical isc	omerism and ha	as no isomers why?			

	(i) What is the avidation state and coordination number of \mathbf{D} t in compound \mathbf{C}^2			
(i) What is the oxidation state and coordination num				
	(ii) Which of the complexes formed for the compounds A, B, C, and D have structural isomers?			
(iii) Predict the shape of each compound.				
Q.28 Suman took two glasses of water from a water filter	She cools one glass in a fridge and	3		
warms the other glass on a stove.	. She cools one glass in a muge and	5		
warms the other grass on a stove.				
Which glass of water will hold more dissolved oxyg	en? Explain using Henry's law.			
Q.29 The image below shows the effect of acid and base of	on the aqueous ethylamine.	3		
Fishy amine	Fishy amine			
smell	smell			
a lille (3) a (13)	2222			
Here as the bas	2000			
	\bigcirc			
1 2 3 4	5			
Solution of Add dilute Temperature Add excess				
ethylamine with hydrochloric rises, smell sodium characteristic smell acid disappears hydroxide	amine returns			
(a) What evidence is there for a chemical reaction be	etween ethylamine and hydrochloric			
acid?				
(b) Why does the smell of ethylamine disappear who	en hydrochloric acid is added?			
(c) Why does the smell of ethylamine reappear when	n sodium hydroxide is added?			
Q.30 A mixture of 0.5 moles acetaldehyde and 0.5 moles	diethyl ketone is treated with 1 mole	3		
of sodium cyanide (NaCN).	•			
What will be the major product in this reaction? Giv	e two reasons for your answer.			
OR		3		
(a) Show steps to convert nitrobenzene to phenol.				
(b) The table below shows the observation when soc	lium reacts with ethanol and phenol.			
Ethanol Solution of phenol in ethanol				
Sodium sinks, evolves Sodium sinks, evolves hydrogen steadily hydrogen rapidly				
(i) The reaction in each case involves reduction of h	ydrogen ion by sodium. Write down			
an ionic reaction for both the cases.	0			
(ii) Which is stronger acid- phenol or ethanol? Why	<u>'</u>			
SECTION D	ka aaab			
This section contains two questions and carry 4 mar		4		
Q.31 The image below shows the double helix structure of	I a DNA.	4		

	 (i) The double helix structure is easily destroyed by change in (a) temperature and (b) pH value. Explain the reason for both the cases. (ii) Suppose the bonds holding the DNA strands for double helix together were (a) covalent bonds (b) London dispersion force. What would be the problem in each case? During a titration, 240 ml of NaOH reacted completely with 100 ml of H₂SO₄ solution. The weight of H₂SO₄ taken was 9.8 g. (i) What is the molarity of the NaOH used? (ii) Calculate the amount of NaOH dissolved in solution. (iii) How many grams of NaOH should be added to the original NaOH solution to make one litre of 0.5M NaOH solution? 	4
	ii) Calculate the amount of NaOH dissolved in solution.iii) How many grams of NaOH should be added to the original NaOH solution to make	
	SECTION E Each question carries 5 marks each. Read the group text or image carefully and answer	
	the question that follow.	
Q.33	One of the most common cells that's been used in our daily life is Duracell, also known as an alkaline cell. The image below shows the internal structure of a Duracell.	5

and first seven straight chain primary alkanes.	
Q.34 The image below shows the boiling point of first seven straight chain primary alcol	hols 5
 i) In which Set up I or II will the colour of CuSO₄ solution fades away and why? ii) Write the chemical reaction taking place at the Cu anode in Set up II. iii) Name the product obtained at the anode in Set up I. iv) Which out of Set up I or II depict refining of crude copper? 	
Imagine you are in a chemistry lab and the teacher is explaining the electrolysis of CuSO ₄ solution and the products liberated after electrolysis. The teacher made two Setups for the electrolysis process. In Set up-I electrolysis of CuSO ₄ solution is done using Pt electrodes and in Set up-II electrolysis of CuSO ₄ solution is done by using electrodes. Answer the following questions based on this:	ne by
OR	5
 (i) Write down the half-cell reactions for this cell at each electrode. (ii) Calculate the overall cell potential. (iii) Which of the two will be the positive electrode and why? (iv) Draw the cell diagram, representing the direction in which reaction occurs in the cell. 	nis
This cell uses a zinc half-cell and another half-cell containing a carbon (graphite) electrode in contact of moist manganese oxide. Given that the electrode potential for $Zn^{2+}/Zn=-0.76$ V and Mn^{4+}/Mn^{3+} (aq.) = +0.76 V	74V.
Porous separator between the electrodes containing absorbed potassium hydroxide solution	
Insulating material	
Carbon (graphite) mixed with MnO ₂	
Steel case (current collector connected to carbon electrode)	
Insulating material	
to zinc electrode	
Steel current collector connected	
+	

Explain the reason for the break in the trend of steady increase in third ionisation enthalpy as shown in the table. Based on this, what can be said about the second ionisation energy of Cr as compared to that of Mn?

..... End of Questions