Applied Mathematics Term - II

Code-241

_	00uc-2+1						
Q.N.	Hints/Solutions	Marks					
	Section – A						
1	Given, $MR = 9 + 2x - 6x^2$ $TR = \int (9 + 2x - 6x^2) dx$ $TR = 9x + x^2 - 2x^3 + k$ When $x = 0$, $TR = 0$, so $k = 0$ $TR = 9x + x^2 - 2x^3$ $\Rightarrow px = 9x + x^2 - 2x^3$	1					
	$\Rightarrow p = 9 + x - 2x^2 \text{ which is the demand function}$	1					
	OR						
	$TC = \int (50 + \frac{300}{x+1}) dx$ $TC = 50x + 300 \log x+1 + k$ If $x = 0, TC = 2000$ So $2000 = 300(\log 1) + k$ $\Rightarrow k = 2000$	1					
	So $TC = 50x + 300 \log(x + 1) + 2000$	1					
2	$R = \$600$ $i = \frac{0.08}{4} = 0.02$	1					
	Present value of perpetuity = $P = \frac{R}{i}$						
	$\Rightarrow P = \frac{600}{0.02} = ₹30,000$	1					
3	$r_{eff} = \left(1 + \frac{r}{m}\right)^m - 1$ $= \left(1 + \frac{0.08}{4}\right)^4 - 1$	1					
	= $(1.02)^4 - 1 = 0.0824$ or 8.24% So effective rate is 8.24% compounded annually.	1					
	Present value of ordinary annuity $= R \left(\frac{1 - (1 + r)^{-n}}{r} \right)$ $= 1000 \left(\frac{1 - (1.06)^{-5}}{0.06} \right)$	1					
	$=1000\left(\frac{1-0.7473}{0.06}\right)=\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	1					
4	$\mathbf{E}\left(\bar{X}\right) = 60kg$	1					

	Standa	1			
5	Year 2016	Y 25	3 yearly moving total	3 yearly moving average(Trend) (in ₹ lakh)	1M for 3-yearly moving
	2017	30	87	29	totals
	2018	32	102	34	
	2019	40	117	39	1M for
	2020	2020 45 135 45			3-yearly
	2021	50			moving average
6	Y↑				
	(0,6) R (1) P(2)				
		F	ner Point P (2, 2) P (3, 0)	Z=3x+2y 10 9	1
	The smallest value of Z is 9. Since the feasible region is unbounded, we draw the graph of $3x + 2y < 9$. The resulting open half plane has points common with feasible region, therefore $Z = 9$ is not the minimum value of Z. Hence the optimal solution does not exist.				1
	1			Section –B	I.
7	Substitu	1			
			$f_0 - \int_0^{x_0} g(x) dx - \int_0^5 (x^2 + 4x + 4x) dx$	3) <i>dx</i>	1
			$\left[\frac{x^3}{3} + 2x^2 + 3x\right]_0^5$		1

8							
	Year	Quarters	Y	4-Quarterly Moving Total	average	erly Moving e (Centered) ₹crore)	$1\frac{1}{2}$ for 4 quarterly
		Q_1	12				moving
		Q_2	14	-			totals
	2018		18	64	1	6.75	
		Q_3	20	70		7.75	
		Q_4		72			
		Q_1	18	74		8.25	
	2019	Q_2	16	76		8.75	
		Q_3	20	85		0.125	$1\frac{1}{2}$ for 4
		Q_4	22	93	2	22.25	Quarterly
		Q_1	27	103	2	24.50	moving
	2020	Q_2	24	117	2	27.5	average
		Q_3	30				(Centered)
		Q_4	36				(Cernered)
	The trend value are given by 4 quarterly centered moving average.						
				OR			
	Yea	ir Y	7	X = Year - 2017	X^2	XY	
	201	4 2	6	-3	9	-78	
	201	5 2	6	-2	4	-52	
	201	6 4	4	-1	1	-44	
	201	7 4	2	0	0	0	
	201	8 10	08	1	1	108	
	201		20	2	4	240	
	202	20 16	66	3	9	498	1
	$\sum Y = 532 \qquad \sum X^2 = 28 \qquad \sum XY = 672$						
	$a = \frac{\sum Y}{n} = \frac{532}{7} = 76, \qquad b = \frac{\sum XY}{\sum X^2} = \frac{672}{28} = 24$ $Y_c = a + bX, \ Y_c = 76 + 24X$ Estimated sales = Y_c for 2023 = 76 + 24 × 6 = ₹220 lacs					1	
						1 1	
						'	

	Thus a two-tailed test is ap have	plied under hypothesis H_0 , we	1
	$t = \frac{\bar{X} - \mu}{s} \sqrt{n - 1} = \frac{0.53 - 0.50}{0.03} \times 3$	= 3	'
	Since the calculated value of $t = \frac{0.03}{1.00}$		
	$-t_{0.025}$ to $t_{0.025}$ i.e., -2.262 to 2.26		
	So we Reject H_0 at 0.05 level. He is not working properly.	ence we conclude that machine	1
10			
	We know		
	$CAGR = \left[\left(\frac{FV}{IV} \right)^{\frac{1}{n}} - 1 \right] \times 100, \text{ where,}$	IV= Initial value of investment	4
		FV=Final value of investment	1
	$\left[(25000)^{\frac{1}{n}} \right]$	$(5)\frac{1}{n}$	
	$\Rightarrow 8.88 = \left[\left(\frac{25000}{15000} \right)^{\frac{1}{n}} - 1 \right] \times 10$	$0 \Rightarrow 0.0888 = \left(\frac{3}{3}\right)^n - 1$	1
	⇒ 1.089 =	$(1.667)^{\frac{1}{n}}$	
	$\Rightarrow \frac{1}{n}\log(1.667) = \log(1.089)$	$\Rightarrow n(0.037) = 0.2219$	1
	$\Rightarrow n = 5.99$	≈ 6 years	
	Se	ction -C	
	Let the company produces x and y	•	
	base oil respectively, also let C be Min $C = 200x + 300y$	e the production cost.	
	subject to constraints:		
	$x + y \ge 3500 \dots (1)$ $x \ge 1250 \dots (2)$		1
	$2x + y \le 6000(3)$		$1\frac{1}{2}$
	$x,y\geq 0$		
	Y↑③		
	6000		
	<i>∠</i> \ →		
	3500		1
	P		$1\frac{1}{2}$
	\rightarrow $\stackrel{R}{\rightarrow}$ $\stackrel{R}{\rightarrow}$		
	0 > 2000 3500	$\longrightarrow X$	
	1250 3000 3500 Corner Points	C = 200m + 200m	
	P(1250, 2250)	C = 200x + 300y $9,25,000$	

	Q(1250, 3500)	₹13,00,000		
	R(2500, 1000)	₹8,00,000		
	Minimum cost is 8,00,000 when 2	_		
	& 1000 gallons of base oil are ma	1		
12	The amount of sinking fund S at a	any time is diven hy		
'2		arry time is given by		1
	$S = R\left[\frac{(1+i)^n - 1}{i}\right]$			•
	Where $R = Periodic paymen$	it, i = Interest per per interest	iod,	
	n = number of payments			
	S= Cost of machine – Salvag	je value		
	= 50,000-5000 = ₹45,000			
	$i = \frac{8\%}{4} = 0.02$			4
	$\Rightarrow 45000 = R \left[\frac{(1+.02)^{40}-1}{0.02} \right]$ $\Rightarrow 45000 = R \left[\frac{2.208-1}{0.02} \right]$			$1\frac{1}{2}$
	$\begin{bmatrix} 0.02 \end{bmatrix}$			- 2
	$\Rightarrow R = \frac{900}{1208} \Rightarrow R = ₹745.03$			1
	1.200			$1\frac{1}{2}$
13.	Amortized Amount i.e., P= Cost of	of house-Cash down pa	yment	_
	P= 15,00,	00,000		
	$i = \frac{0.09}{12} = 1$		_	
	$n = 10 \times$		1	
	$EMI = R = \frac{P}{a_{n-i}} ,$			
	$a_{n \neg i}$ ' $P \times i$		1	
	$R = \frac{P \times i}{1 - (1 + i)^{-n}}$		'	
	$=\frac{11,00,000\times0.00^{\circ}}{1-(1.0075)^{-12}}$		1	
	$1-(1.0075)^{-12}$ 8250			
	$=\frac{8250}{0.5921} = \$1$			
	Total interest paid $= nR -$		11,00,000	1
		=₹5,72,020		
	Face value of bond, F = ₹2000	DR		
	Redemption value C = 1.05	∨ 2000 – ₹2100		
	Nominal rate =8%	× 2000 – \2100		1
	$R = C \times i_d = 2000 \times 0.08 =$	₹160		$1\frac{1}{2}$
	Number of periods before redempt			۷
	Annual yield rate, $i = 10\%$ or 0.1	, -		
	Purchase price $V = R\left[\frac{1-(1+i)^{-n}}{i}\right]$	$+C(1+i)^{-n}$		₁ 1
				$1\frac{1}{2}$
	$=160\left[\frac{1-(1+0.1)}{0.1}\right]$	$\frac{(1-1)^{-10}}{(1-1)^{-1}} + 2100(1+0.1)^{-1}$	U	
	$= 160 \times 6.14 + 100$	$+2100 \times 0.3855$		
	= 982.4 + 809	.6 = 1792		

	Thus present value of the bond is ₹1792.	1
14	Case Study	
a)	$ \frac{dx}{dt} \propto x, \therefore \frac{dx}{dt} = -kx $ $ \Rightarrow \int \frac{dx}{x} = \int -k dt \Rightarrow \log x = -kt + c $ $ \Rightarrow x = e^{-kt+C} \Rightarrow x = \lambda e^{-kt} $	1
	Let $x = x_0$ at $t = 0$ $x_0 = \lambda \Rightarrow x = x_0 e^{-kt}$ where $x_0 = \text{original quantity}$	1
b)	$x = x_0 e^{-kt} \dots (1)$ Now, $\frac{x_0}{2} = x_0 e^{-5k}$ (: half life = 5 hours) $\Rightarrow e^{-5k} = \frac{1}{2} \Rightarrow e^k = 2^{\frac{1}{5}}$	1
	The quantity of propofol needed in a 50 Kg adult at the end of 2 hours = $50 \times 3 = 150 \text{ mg} \Rightarrow 150 = x_0 e^{-2k}$ [using (1)] $\Rightarrow x_0 = 150 \ e^{2k} \Rightarrow x_0 = 150 \ (e^k)^2$ $\Rightarrow x_0 = 150(2^{\frac{1}{5}})^2 = 150 \times 1.3195 = 197.93 \text{ mg}$	1