Class- X

Mathematics-Basic (241)

Marking Scheme SQP-2020-21

Max. Marks: 80 Duration: 3hrs

<table>
<thead>
<tr>
<th>Qtn No.</th>
<th>Question</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$156 = 2^2 \times 3 \times 13$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Quadratic polynomial is given by $x^2 - (a+b)x + ab$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$x^2 - 2x - 8$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HCF X LCM = product of two numbers</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>LCM $(96,404) = \frac{96 \times 404}{HCF(96,404)} = \frac{96 \times 404}{4}$</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>$\text{LCM} = 9696$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Every composite number can be expressed (factorized) as a product of primes, and this factorization is unique, apart from the order in which the factors occur.</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>$x - 2y = 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$3x + 4y - 20 = 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{3} \neq \frac{-2}{4}$</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>As, $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ is one condition for consistency.</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>Therefore, the pair of equations is consistent.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>$\theta = 60^\circ$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area of sector $= \frac{\theta}{360^\circ} \pi r^2$</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>$A = \frac{60^\circ}{360^\circ} \times \frac{22}{7} \times (6)^2 \text{cm}^2$</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>$A = \frac{1}{6} \times \frac{22}{7} \times 36 \text{ cm}^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 18.86 \text{ cm}^2$</td>
<td></td>
</tr>
</tbody>
</table>
OR

Another method-
Horse can graze in the field which is a circle of radius 28 cm.
So, required perimeter $= 2\pi r = 2\pi(28) cm$
\[
= 2 \times \frac{22}{7} \times 28 \text{ cm} = 176 \text{ cm}
\]

| 7 | By converse of Thale’s theorem DE II BC
| | $\angle ADE = \angle ABC = 70^\circ$
| | Given $\angle BAC = 50^\circ$
| | $\angle ABC + \angle BAC + \angle BCA = 180^\circ$ (Angle sum prop of triangles)
| | $70^\circ + 50^\circ + \angle BCA = 180^\circ$
| | $\angle BCA = 180^\circ - 120^\circ = 60^\circ$

OR

\[
EC = AC - AE = (7 - 3.5) \text{ cm} = 3.5 \text{ cm}
\]
\[
\frac{AD}{BD} = \frac{2}{3} \text{ and } \frac{AE}{EC} = \frac{3.5}{3.5} = \frac{1}{1}
\]

So, $\frac{AD}{BD} = \frac{AE}{EC}$

Hence, By converse of Thale’s Theorem, DE is not Parallel to BC.

| 8 | Length of the fence $= \frac{\text{Total cost}}{\text{Rate}} = \frac{\text{Rs.5280}}{\text{Rs.24/metre}} = 220 \text{ m}$
| | So, length of fence = Circumference of the field
| | $\therefore 220 \text{ m} = 2 \pi r = 2 \times \frac{22}{7} \times r$
| | So, $r = \frac{220 \times 7}{2 \times 22} \text{ m} = 35 \text{ m}$

| 9 | Sol: $\tan 30^\circ = \frac{AB}{BC}$
| | $\frac{1}{\sqrt{3}} = \frac{AB}{8}$
| | $AB = 8 / \sqrt{3} \text{ metres}$
| | Height from where it is broken is $8\sqrt{3} \text{ metres}$

| 1/2 |
10. Perimeter = Area
 $2\pi r = \pi r^2$
 $r = 2$ units

11. 3 median = mode + 2 mean

12. 8

13. $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ is the condition for the given pair of equations to have unique solution.

 $\frac{4}{2} \neq \frac{p}{2}$
 $p \neq 4$

 Therefore, for all real values of p except 4, the given pair of equations will have a unique solution.

 OR

 Here, $\frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2}$
 $\frac{b_1}{b_2} = \frac{3}{6} = \frac{1}{2}$ and $\frac{c_1}{c_2} = \frac{5}{7}$
 $\frac{1}{2} = \frac{1}{2} \neq \frac{5}{7}$

 $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ is the condition for which the given system of equations will represent parallel lines.

 So, the given system of linear equations will represent a pair of parallel lines.

14. No. of red balls = 3, No. black balls = 5
 Total number of balls = $5 + 3 = 8$
 Probability of red balls $= \frac{3}{8}$

 OR

 Total no of possible outcomes = 6
 There are 3 Prime numbers, 2,3,5.
 So, Probability of getting a prime number is $\frac{3}{6} = \frac{1}{2}$
15

\[\tan 60^\circ = \frac{h}{15} \]
\[\sqrt{3} = \frac{h}{15} \]
\[h = 15\sqrt{3} \text{ m} \]

16 i)
Ans: b)
Cloth material required = 2X S A of hemispherical dome
= 2 \times 2\pi r^2
= 2 \times 2 \times \frac{22}{7} \times (2.5)^2 \text{ m}^2
= 78.57 \text{ m}^2

ii) a) Volume of a cylindrical pillar = \pi r^2h

iii) b) Lateral surface area = 2\pi rh
= 4 \times \frac{22}{7} \times 1.4 \times 7 \text{ m}^2
= 123.2 \text{ m}^2

iv) d) Volume of hemisphere \(\frac{2}{3} \pi r^3 \)
= \(\frac{2}{3} \times \frac{22}{7} \times (3.5)^3 \) m\(^3\)
= 89.83 m\(^3\)

v) b)
Sum of the volumes of two hemispheres of radius 1cm each = 2 \times \frac{2}{3} \pi 1^3
Volume of sphere of radius 2cm = \(\frac{4}{3} \pi 2^3 \)
So, required ratio is \(\frac{2 \times \frac{2}{3} \pi 1^3}{\frac{4}{3} \pi 2^3} = 1:8 \)
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>i)</td>
<td>c) (0,0)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ii)</td>
<td>a) (4,6)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>iii)</td>
<td>a) (6,5)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>iv)</td>
<td>a) (16,0)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>v)</td>
<td>b) (-12,6)</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>i)</td>
<td>c) 90°</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ii)</td>
<td>b) SAS</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>iii)</td>
<td>b) 4 : 9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>iv)</td>
<td>d) Converse of Pythagoras theorem</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>v)</td>
<td>a) 48 cm²</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>i)</td>
<td>d) parabola</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ii)</td>
<td>a) 2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>iii)</td>
<td>b) -1, 3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>iv)</td>
<td>c) $x^2 - 2x - 3$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>v)</td>
<td>d) 0</td>
<td>1</td>
</tr>
</tbody>
</table>

21 Let P(x,y) be the required point. Using section formula

$$\left(\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2} \right) = (x, y)$$

$$x = \frac{3(8)+1(4)}{3+1}, \quad y = \frac{3(5)+1(-3)}{3+1}$$

$$x = 7, \quad y = 3$$

(7,3) is the required point

1
Let P(x, y) be equidistant from the points A(7,1) and B(3,5)
Given AP = BP. So, AP² = BP²
\((x-7)^2 + (y-1)^2 = (x-3)^2 + (y-5)^2\)
\(x^2 -14x + 49 + y^2 - 2y + 1 = x^2 - 6x + 9 + y^2 - 10y + 25\)
\(x - y = 2\)

By BPT,
\[
\frac{AM}{MB} = \frac{AL}{LC} \quad \text{...........(1)}
\]
Also, \(\frac{AN}{ND} = \frac{AL}{LC} \quad \text{...........(2)}\)

By Equating (1) and (2) \(\frac{AM}{MB} = \frac{AN}{ND}\)

To prove: AB + CD = AD + BC.

Proof: AS = AP (Length of tangents from an external point to a circle are equal)
\(BQ = BP\)
\(CQ = CR\)
\(DS = DR\)
\(AS + BQ + CQ + DS = AP + BP + CR + DR\)
\((AS + DS) + (BQ + CQ) = (AP + BP) + (CR + DR)\)
\(AD + BC = AB + CD\)

For the correct construction
15 cot A = 8, find sin A and sec A.

Cot A = 8/15

By Pythagoras Theorem

\[AC^2 = AB^2 + BC^2 \]

\[AC = \sqrt{(8x)^2 + (15x)^2} \]

\[AC = 17x \]

\[\sin A = \frac{15}{17} \]

\[\cos A = \frac{8}{17} \]

OR

By Pythagoras Theorem

\[QR = \sqrt{(13)^2 - (12)^2} \text{ cm} \]

\[QR = 5 \text{ cm} \]

\[\tan P = \frac{5}{12} \]

\[\cot R = \frac{5}{12} \]

\[\tan P - \cot R = \frac{5}{12} - \frac{5}{12} = 0 \]

9, 17, 25,

\[S_n = \frac{n}{2} \left[2a + (n-1) d \right] \]

\[a = 9 \]

\[d = a_2 - a_1 \]

\[= 17 - 9 = 8 \]

\[S_n = \frac{n}{2} \left[2a + (n-1) d \right] \]
\[
636 = \frac{n}{2} \left[2 \times 9 + (n-1) \times 8 \right] \\
1272 = n \left[18 + 8n - 8 \right] \\
1272 = n \left[10 + 8n \right] \\
8n^2 + 10n - 1272 = 0 \\
4n^2 + 5n - 636 = 0
\]

\[
n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
n = \frac{-5 \pm \sqrt{5^2 - 4 \times 4 \times (-636)}}{2 \times 4} \\
n = \frac{-5 \pm 101}{8} \\
n = \frac{96}{8}, \quad n = \frac{-106}{8}, \quad n = \frac{-53}{4}
\]

\[n = 12 \text{ (since } n \text{ cannot be negative)}\]

27

Let \(\sqrt{3}\) be a rational number. Then \(\sqrt{3} = \frac{p}{q} \quad \text{HCF (p,q) = 1}\)

Squaring both sides
\[
(\sqrt{3})^2 = (\frac{p}{q})^2 \\
3 = \frac{p^2}{q^2} \\
3q^2 = p^2
\]

3 divides \(p^2 \Rightarrow 3\) divides \(p\)

3 is a factor of \(p\)

Take \(p = 3C\)
\[
3q^2 = (3c)^2 \\
3q^2 = 9C^2
\]

3 divides \(q^2 \Rightarrow 3\) divides \(q\)

3 is a factor of \(q\)

Therefore 3 is a common factor of \(p\) and \(q\)

It is a contradiction to our assumption that \(p/q\) is rational.

Hence \(\sqrt{3}\) is an irrational number.

28
Required to prove \(\angle PTQ = 2 \angle OPQ \)

Sol:

Let \(\angle PTQ = \theta \)

Now by the theorem TP = TQ. So, TPQ is an isosceles triangle

\(\angle TPQ = \angle TQP = \frac{1}{2} (180^\circ - \theta) \)

\(\angle OPT = 90^\circ \)

\(\angle OPQ = \angle OPT - \angle TPQ = 90^\circ - (90^\circ - \frac{1}{2} \theta) = \frac{1}{2} \theta = \frac{1}{2} \angle PTQ \)

\(\angle PTQ = 2 \angle OPQ \)

29

Let Meena has received \(x \) no. of 50 re notes and \(y \) no. of 100 re notes. So,

\(50x + 100y = 2000 \)

\(x + y = 25 \)

Multiply by 50

\(50x + 100y = 2000 \)

\(50x + 50y = 1250 \)

\(50y = 750 \)

\(y = 15 \)

Putting value of \(y = 15 \) in equation (2)

\(x + 15 = 25 \)

\(x = 10 \)

Meena has received 10 pieces 50 re notes and 15 pieces of 100 re notes.

30

(i) 10, 11, 12...90 are two digit numbers. There are 81 numbers. So, probability of getting a two-digit number

\(= \frac{81}{90} = \frac{9}{10} \)

(ii) 1, 4, 9, 16, 25, 36, 49, 64, 81 are perfect squares. So, probability of getting a perfect square number.

\(= \frac{9}{90} = \frac{1}{10} \)

(iii) 5, 10, 15...90 are divisible by 5. There are 18 outcomes. So, probability of getting a number divisible by 5.

\(= \frac{18}{90} = \frac{1}{5} \)
OR

(i) Probability of getting A king of red colour.

\[P(\text{King of red colour}) = \frac{2}{52} = \frac{1}{26} \]

(ii) Probability of getting A spade

\[P(\text{a spade}) = \frac{13}{52} = \frac{1}{4} \]

(iii) Probability of getting The queen of diamonds

\[P(\text{a the queen of diamonds}) = \frac{1}{52} \]

| 31 | \(r_1 = 6\text{cm} \)
| | \(r_2 = 8\text{cm} \)
| | \(r_3 = 10\text{cm} \)
| | Volume of sphere = \(\frac{4}{3} \pi r^3 \)
| | Volume of the resulting sphere = Sum of the volumes of the smaller spheres.
| | \[\frac{4}{3} \pi r^3 = \frac{4}{3} \pi r_1^3 + \frac{4}{3} \pi r_2^3 + \frac{4}{3} \pi r_3^3 \]
| | \[\frac{4}{3} \pi r^3 = \frac{4}{3} \pi (r_1^3 + r_2^3 + r_3^3) \]
| | \[r^3 = 6^3 + 8^3 + 10^3 \]
| | \[r^3 = 1728 \]
| | \[r = 12\text{cm} \]
| | Therefore, the radius of the resulting sphere is 12cm.

| 32 | \((\sin A - \cos A + 1)/ (\sin A + \cos A - 1) = 1/(\sec A - \tan A) \)
| | L.H.S. divide numerator and denominator by \(\cos A \)
| | \[= (\tan A - 1 + \sec A)/ (\tan A + 1 - \sec A) \]
| | \[= (\tan A - 1 + \sec A)/ (1 - \sec A + \tan A) \]
| | We know that \(1 + \tan^2 A = \sec^2 A \)
| | Or \(1 = \sec^2 A - \tan^2 A \)
| | \(1 = (\sec A + \tan A)(\sec A - \tan A) \)
| | \[= (\sec A + \tan A - 1)/[(\sec A + \tan A)(\sec A - \tan A) - (\sec A - \tan A)] \]
| | \[= (\sec A + \tan A - 1)/(\sec A - \tan A)(\sec A + \tan A - 1) \]
Given:

Speed of boat =18 km/hr
Distance =24 km

Let \(x \) be the speed of stream.
Let \(t_1 \) and \(t_2 \) be the time for upstream and downstream.
As we know that,

\[
\text{speed} = \frac{\text{distance}}{\text{time}}
\]

\[
\Rightarrow \text{time} = \frac{\text{distance}}{\text{speed}}
\]

For upstream,
\[
\text{Speed} = (18-x) \text{ km/hr}
\]
\[
\text{Distance} = 24 \text{ km}
\]
\[
\text{Time} = t_1
\]
Therefore,
\[
t_1 = \frac{24}{18-x}
\]

For downstream,
\[
\text{Speed} = (18+x) \text{ km/hr}
\]
\[
\text{Distance} = 24 \text{ km}
\]
\[
\text{Time} = t_2
\]
Therefore,
\[
t_2 = \frac{24}{18+x}
\]

Now according to the question,

\[
t_1 = t_2 + 1
\]

\[
\frac{24}{18-x} = \frac{24}{18+x} + 1
\]

\[
\Rightarrow \frac{24(18+x) - 24(18-x)}{(18-x)(18+x)} = 1
\]

\[
\Rightarrow 48x = (18-x)(18+x)
\]

\[
\Rightarrow 48x = 324 + 18x - 18x - x^2
\]

\[
\Rightarrow x^2 + 48x - 324 = 0
\]

\[
\Rightarrow x^2 + 54x - 6x - 324 = 0
\]

\[
\Rightarrow (x+54)(x-6) = 0
\]
\[x = -54 \text{ or } x = 6 \]

Since speed cannot be negative.

\[x = -54 \text{ will be rejected} \]

\[x = 6 \]

Thus, the speed of stream is 6 km/hr.

OR

Let one of the odd positive integer be \(x \)
then the other odd positive integer is \(x + 2 \)
their sum of squares = \(x^2 + (x+2)^2 \)
\[= x^2 + x^2 + 4x + 4 \]
\[= 2x^2 + 4x + 4 \]

Given that their sum of squares = 290
\[\Rightarrow 2x^2 + 4x + 4 = 290 \]
\[\Rightarrow 2x^2 + 4x = 290 - 4 = 286 \]
\[\Rightarrow 2x^2 + 4x - 286 = 0 \]
\[\Rightarrow 2(x^2 + 2x - 143) = 0 \]
\[\Rightarrow x^2 + 13x - 11x - 143 = 0 \]
\[\Rightarrow x(x + 13) - 11(x + 13) = 0 \]
\[\Rightarrow (x - 11)(x + 13) = 0 \]
\[\Rightarrow (x - 11) = 0 \text{, } (x + 13) = 0 \]
Therefore, \(x = 11 \) or -13

According to question, \(x \) is a positive odd integer.
Hence, We take positive value of \(x \)

So, \(x = 11 \) and \((x + 2) = 11 + 2 = 13 \)
Therefore, the odd positive integers are 11 and 13.
Let AB and CD be the multi-storeyed building and the building respectively.

Let the height of the multi-storeyed building = \(h \) m and the distance between the two buildings = \(x \) m.

\(AE = CD = 8 \) m [Given]

\(BE = AB - AE = (h - 8) \) m

and

\(AC = DE = x \) m [Given]

Also,

\(\angle FBD = \angle BDE = 30^\circ \) (Alternate angles)

\(\angle FBC = \angle BCA = 45^\circ \) (Alternate angles)

Now,

In \(\Delta ACB, \)

\[\Rightarrow \tan 45^\circ = \frac{AB}{AC} \quad [\because \tan \theta = \frac{\text{Perpendicular}}{\text{Base}}] \]

\[\Rightarrow 1 = \frac{h}{x} \]

\[\Rightarrow x = \frac{h}{1} \quad \text{(i)} \]

In \(\Delta BDE, \)
From (i) and (ii), we get,

\[h = \sqrt{3}h - 8\sqrt{3} \]

\[\sqrt{3}h - h = 8\sqrt{3} \]

\[h (\sqrt{3} - 1) = 8\sqrt{3} \]

\[h = \frac{8\sqrt{3}}{\sqrt{3} - 1} \]

\[h = \frac{8\sqrt{3}}{\sqrt{3} - 1} \cdot \frac{\sqrt{3} + 1}{\sqrt{3} + 1} \]

\[h = 4\sqrt{3} (\sqrt{3} + 1) \]

\[h = 12 + 4\sqrt{3} \text{ m} \]

Distance between the two building

\[x = (12 + 4\sqrt{3}) \text{ m} \quad [\text{From (i)}] \]

\[x = 4\sqrt{3} (\sqrt{3} + 1) \]

\[x = 12 + 4\sqrt{3} \text{ m} \]

OR

From the figure, the angle of elevation for the first position of the balloon \(\angle EAD = 60^\circ \) and for second position \(\angle BAC = 30^\circ \). The vertical distance

\[ED = CB = 88.2 - 1.2 = 87 \text{ m} \]
Let AD = x m and AB = y m.

Then in right Δ ADE, \(\tan 60^\circ = \frac{DE}{AD} \)

\[\sqrt{3} = \frac{87}{x} \]

\[x = \frac{87}{\sqrt{3}} \quad \ldots \ldots \text{(i)} \]

In right ΔABC, \(\tan 30^\circ = \frac{BC}{AB} \)

\[\frac{1}{\sqrt{3}} = \frac{87}{y} \]

\[y = 87\sqrt{3} \quad \ldots \ldots \text{(ii)} \]

Subtracting (i) and (ii)

\[y - x = 87\sqrt{3} - \frac{87}{\sqrt{3}} \]

\[y - x = 58\sqrt{3} \text{ m} \]

Hence, the distance travelled by the balloon is equal to BD

\[y - x = 58\sqrt{3} \text{ m} \]

Let A be the first term and D the common difference of A.P.

\[T_p = a = A + (p - 1)D = (A - D) + pD \quad \text{(1)} \]

\[T_q = b = A + (q - 1)D = (A - D) + qD \quad \ldots \ldots \text{(2)} \]

\[T_r = c = A + (r - 1)D = (A - D) + rD \quad \ldots \ldots \text{(3)} \]

Here we have got two unknowns A and D which are to be eliminated.

We multiply (1), (2) and (3) by \(q - r, r - p \) and \(p - q \) respectively and add:

\[a(q - r) = (A - D)(q - r) + D(p(q - r)) \]

\[b(r - p) = (A - D)(r - p) + D(q(r - p)) \]

\[c(p - q) = (A - D)(p - q) + D(r(p - q)) \]

\[a(q - r) + b(r - p) + c(p - q) \]

\[= (A - D)[q - r + r - p + p - q] + D[p(q - r) + q(r - p) + r(p - q)] \]

\[= (A - D)(0) + D[pq - pr + qr - pq + rp - rq] \]

\[= 0 \]
Height (in cm)	f	C.F.
below 140 | 4 | 4
140-145 | 7 | 11
145-150 | 18 | 29
150-155 | 11 | 40
155-160 | 6 | 46
160-165 | 5 | 51

\(N=51\Rightarrow\)

\(N/2=51/2=25.5\)

As 29 is just greater than 25.5, therefore median class is 145-150.

\[\text{Median} = l + \left(\frac{\frac{N}{2} - C}{f}\right) \times h\]

Here, \(l\) = lower limit of median class =145

\(C\) = C.F. of the class preceding the median class =11

\(h\) = higher limit - lower limit =150−145=5

\(f\) = frequency of median class =18

\[\therefore \text{median} = 145 + \left(\frac{25.5−11}{18}\right) \times 5\]

\(=149.03\)

Mean by direct method

\[
\text{Mean} = \frac{\sum fx}{N}
\]

\[=7637.5/51\]

\[=149.75\]