SAMPLE PAPER 1

SECTION A

<table>
<thead>
<tr>
<th>Q.No.</th>
<th>Value Point</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(i)</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>(ii)</td>
<td>B OR A</td>
<td>1</td>
</tr>
<tr>
<td>(iii)</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>(iv)</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>2(i)</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>(ii)</td>
<td>A OR B</td>
<td>1</td>
</tr>
<tr>
<td>(iii)</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>(iv)</td>
<td>A OR B</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>D OR C</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>B OR B</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>B OR D</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>A OR A</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>B OR B</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>Q.No.</td>
<td>VALUE POINTS</td>
<td>MARKS</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>17</td>
<td>Nitro group at ortho position withdraws the electron density from the benzene ring and thus facilitates the attack of the nucleophile on haloarene.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>$\Delta T_b = K_b \cdot m$ $\Delta T_b = 101.04-100 = 1.04^\circ C$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>or $m = 1.04/0.52 = 2$ m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 m solution means 2 moles of solute in 1 kg of solvent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 m aq solution of urea means 2 moles of urea in 1 kg of water.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of moles of water = 1000/18 = 55.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relative lowering of VP = x_2 (where x_2 is mole fraction of solute)</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>Relative lowering of VP = n_2/n_1+n_2 (n_2 is no. of moles of solute, n_1 is no. of moles of solvent)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 2/2+55.5 = 2/57.5 = 0.034$</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>(i) $t_2^g e_g^2$ Paramagnetic</td>
<td>$\frac{1}{2}, \frac{1}{2}$</td>
</tr>
<tr>
<td></td>
<td>(ii) Dichloridobis(ethane-1,2-diamine)cobalt(III)nitrate</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(i) Square planar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(ii) $Cu^{2+} = 3d^9 \cdot 1$ unpaired electron so $\sqrt{1(3)} = 1.73BM$</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Reaction is a complex reaction.</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>Order of reaction is 1.5.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Molecularity cannot be 1.5, it has no meaning for this reaction. The reaction occurs in steps, so it is a complex reaction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ii) Units of k are $mol^{1/2}L^{1/2}sec^{-1}$</td>
<td>1</td>
</tr>
</tbody>
</table>
Ans: let the rate law expression be $\text{Rate} = k \ [P]^x [Q]^y$

from the table we know that

Rate 1 = $3.0 \times 10^{-4} = k \ (0.10)^x \ (0.10)^y$
Rate 2 = $9.0 \times 10^{-4} = k \ (0.30)^x \ (0.30)^y$
Rate 3 = $3.0 \times 10^{-4} = k \ (0.10)^x \ (0.30)^y$

Rate 1/ Rate 3 = $(1/3)^y$ or $1 = (1/3)^y$
So $y = 0$

Rate 2/ Rate 3 = $(3)^x$ or $3 = (3)^x$
So $x = 1$

Rate = $k \ [P]^{1/2} \ [Q]^{1/2}$

$k = 0.693/t_{1/2}$
$k = 0.693/5730 \ \text{years}^{-1}$
$t = 2.303 \ \log \frac{C_0}{C_t}$

let $C_0 = 1 \ Ct = 3/10$ so $C_0/C_t = 1/ (3/10) = 10/3$
$t = 2.303 \times 5730 \ \log \frac{10}{3}$
$t = 19042 \times (1-0.4771) = 9957 \ \text{years}$

Central atom Xe has 8 valence electrons, it forms 6 bonds with F and has 1 lone pair. According to VSEPR theory, presence of 6 bp and 1 lp results in distorted octahedral geometry.
24. **Racemic mixture will be given by 2 chlorobutane as it is an optically active compound.**
When 2 chlorobutane undergoes S_{N}^1 reaction, both front and rear attack are possible, resulting in a racemic mixture.

25. **Let no. of Atoms of element P be x**
- No. of tetrahedral voids = $2x$
- No. of octahedral voids = x

\[
\text{Atoms of Q} = \frac{1}{3} (2x) + x = \frac{5x}{3}
\]
\[
P_3Q_{5x/3}
\]
\[
P_3Q_5
\]

SECTION C

26. **(i) Due to large surface area and ability to show variable oxidation states**
(ii) Due to high value of third ionisation enthalpy
(iii) Mo(VI) and W(VI) are more stable than Cr(VI).

OR

(i) The general trend towards less negative E^o V values across the series is related to the general increase in the sum of the first and second ionisation enthalpies.
(ii) The high energy to transform Cu(s) to $\text{Cu}^{2+} (\text{aq})$ is not balanced by its hydration enthalpy.
(iii) The stability of the half-filled d sub-shell in Mn^{2+} and the completely filled d^{10} configuration in Zn^{2+} are related to their more negative E^o V values.

27. **(i) Aniline, N-ethylethanamine, Ethanamine**
(ii) Ethanamine, ethanol, ethanoic acid
(iii) N, N dimethylmethanamine, methanamine, N-methylmethanamine

OR

(i) N-methyllethahamine is a secondary amine. When it reacts with benzencesulphonyl chloride, it forms N- Ethyl N methyl sulphonamide while and
N,N-dimethyl ethylnanmine is a tertiary amine it does not react with benzenesulphonyl chloride.

(iii) Butan-1-ol
Alcohol forms stronger hydrogen bonds with water than formed by amine due to higher electronegativity of O in alcohol than N in amine.

28 We know that \(d = \frac{ZM}{Na^3} \)

For fcc, \(z=4 \) therefore \(d = 4 \times M / Na \times (3.5 \times 10^{-8})^3 \) g/cm³

For bcc, \(z=2 \) therefore \(d' = 2 \times M / Na \times (3.0 \times 10^{-8})^3 \) g/cm³

\[
\frac{d}{d'} = \frac{4/(3.5 \times 10^{-8})^3}{2/(3.0 \times 10^{-8})^3} = 1.26:1
\]

29 (i) \[
\begin{align*}
\text{HOOC} & \quad \text{CH} \quad \text{N} \quad \text{C} \quad \text{CH} \quad \text{N} \quad \text{C} \\
& \quad \| \quad \| \quad \| \quad \| \\
& \quad \text{H} \quad \text{O} \quad \text{H} \quad \text{O}
\end{align*}
\]

(ii) \[
\begin{align*}
\text{HOOC} & \quad \text{CH} \quad \text{N} \quad \text{C} \quad \text{CH} \quad \text{N} \quad \text{C} \\
& \quad \| \quad \| \quad \| \quad \| \\
& \quad \text{H} \quad \text{O} \quad \text{H} \quad \text{O}
\end{align*}
\]

30 i. Arrange the following in decreasing order of bond dissociation enthalpy:

\[\text{Cl}_2 > \text{Br}_2 > \text{F}_2 > \text{I}_2 \]

ii. Bi does not form \(\pi \)-\(\pi \) bonds as its atomic orbitals are large and diffuse so effective overlapping is not possible.

iii. Due to small size of oxygen, it has greater electron-electron repulsions.

SECTION D

31. (i)
(a) \(3\text{Cu} + 8 \text{HNO}_3(\text{dilute}) \rightarrow 3\text{Cu(NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O} \)
(b)
(ii) 'X' is Helium
It is used as a diluent for oxygen in modern diving apparatus because of its very low solubility in blood.
It monoatomic having no interatomic forces except weak dispersion forces and has second lowest mass therefore bp is lowest.

OR
(a) H₂Te, H₂Se, H₂S, H₂O
(b) [Fe(H₂O)₅(NO)]²⁺

(ii) A is chlorine gas
Its bleaching action is due to oxidation.
Cl₂ + H₂O → 2HCl + O₂, Coloured substance + O → Colourless substance
6 NaOH + 3Cl₂ → 5NaCl + NaClO₃ + 3H₂O

32

½ each
(i) Limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte.

(ii) $E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} = 0.34 - (-1.66) = 2.00 \text{ V}$

$E_{\text{cell}} = E^\circ_{\text{cell}} - 0.059 \log \left[\text{Al}^{3+} \right]$
Here $n = 6$

$E_{\text{cell}} = 2 - 0.059 \log [0.15]^2$

$\frac{n}{6} [0.025]^3$

$= 2 - 0.059/6 (2 \log 0.15 - 3 \log 0.025)$

$= 2 - 0.059/6 (-1.6478 +4.8062) = 2 - 0.0311 = 1.9689 \text{V}$

OR

(i) MnO_4^-

(ii)(a) Molar conductivity of a solution at a given concentration is the conductance of the volume V of solution containing one mole of electrolyte kept between two electrodes with area of cross section A and distance of unit length.

(b) Strong electrolyte, for strong electrolytes, Λm increases slowly with dilution

(c) $\Lambda m = \Lambda m^\circ - A c^{1/2}$

Therefore $\Lambda m^\circ = 150 \text{ S cm}^2 \text{ mol}^{-1}$

(d)

\[
A = -\text{slope} = - \frac{(149 - 147.8)/0.010-0.022}{0.010-0.022} = 100 \text{ S cm}^2 \text{ mol}^{-1}/(\text{mol/L}^{-1})^{1/2}.
\]