General Instructions:

(a) All questions are compulsory.
(b) Programming Language with C++
(c) In Question 2(b, d), 3 and 4 has internal choices.

<table>
<thead>
<tr>
<th>Q. No.</th>
<th>Part</th>
<th>Question Description</th>
<th>Marks</th>
</tr>
</thead>
</table>
| 1 | (a) | Write the type of C++ Operators (Arithmetic, Logical, and Relational Operators) from the following:
(i) !(ii) !=(iii) &&(iv) % | (2) |
| | (b) | Observe the following program very carefully and write the name of those header file(s), which are essentially needed to compile and execute the following program successfully:
void main()
{
 char text[20], newText[20];
 gets(text);
 strcpy(newText,text);
 for(int i=0;i<strlen(text);i++)
 if(text[i] = ='A')
 text[i] = text[i]+2;
 puts(text);
} | (1) |
| | (c) | Rewrite the following C++ code after removing any/all Syntactical Error(s) with each correction underlined.
Note: Assume all required header files are already being included in the program.
#define float PI 3.14
void main()
{
 float R=4.5,H=1.5;
 A=2*PI*R*H + 2*PIpow(R,2);
 cout<"Area="<"A"<<endl;
} | (2) |
(d) Find and write the output of the following C++ program code:

Note: Assume all required header files are already being included in the program.

```cpp
void main()  
{  
    int Ar[] = { 6, 3, 8, 10, 4, 6, 7 };  
    int *Ptr = Ar, I;  
    cout << ++*Ptr++ << '@';  
    I = Ar[3] - Ar[2];  
    cout << ++*(Ptr+I) << '@' << endl;  
    cout << ++I + *Ptr++ << '@';  
    cout << *Ptr++ << '@' << endl;  
    for( ; I >=0 ; I -=2)  
        cout << Ar[I] << '@';  
}
```

(e) Find and write the output of the following C++ program code:

```cpp
typedef char STRING[80];
void MIXNOW(STRING S)  
{  
    int Size=strlen(S);  
    for(int I=0;I<Size;I+=2)  
    {  
        char WS=S[I];  
        S[I]=S[I+1];  
        S[I+1]=WS;  
    }  
    for (I=1;I<Size;I+=2)  
        if (S[I]>='M' && S[I]<='U')  
            S[I]='@';  
}  
void main()  
{  
    STRING Word="CBSEEXAM2019";  
    MIXNOW(Word);  
    cout << Word << endl;  
}
```

(f) Observe the following program and find out, which output(s) out of (i) to (iv) will be expected from the program? What will be the minimum and the maximum value assigned to the variable Alter?

Note: Assume all required header files are already being included in the program.

```cpp
void main()  
{  
    randomize();  
    int Ar[]={10,7}, N;  
```
2
(a) What is a copy constructor? Illustrate with a suitable C++ example. (2)

(b) Write the output of the following C++ code. Also, write the name of feature of Object Oriented Programming used in the following program jointly illustrated by the Function 1 to Function 4.

```
void My_fun ( )    // Function 1
{
   for (int I=1 ; I<=50 ; I++) cout<< "-" ;
   cout<<endl ;
}
void My_fun (int N)  // Function 2
{
   for (int I=1 ; I<=N ; I++) cout<<"*" ;
   cout<<endl ;
}
void My_fun (int A, int B)  // Function 3
{
   for (int I=1. ;I<=B ;I++) cout <<A*I ;
   cout<<endl ;
}
void My_fun (char T, int N)  // Function 4
{
   for (int I=1 ; I<=N ; I++) cout<<T ;
   cout<<endl ;
}
void main ( )
{
   int X=7, Y=4, Z=3;
   char C="#" ;
   My_fun (C,Y) ;
   My_fun (X,Z) ;
}
```

OR

(b) Write any four differences between Constructor and Destructor function with respect to object oriented programming.
(c) Define a class Ele_Bill in C++ with the following descriptions:

Private members:
- Cname of type character array
- Pnumber of type long
- No_of_units of type integer
- Amount of type float.
- Calc_Amount() This member function should calculate the amount as No_of_units*Cost.

Amount can be calculated according to the following conditions:

<table>
<thead>
<tr>
<th>No_of_units</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>First 50 units</td>
<td>Free</td>
</tr>
<tr>
<td>Next 100 units</td>
<td>0.80 @ unit</td>
</tr>
<tr>
<td>Next 200 units</td>
<td>1.00 @ unit</td>
</tr>
<tr>
<td>Remaining units</td>
<td>1.20 @ unit</td>
</tr>
</tbody>
</table>

Public members:

- A function Accept() which allows user to enter Cname, Pnumber, No_of_units and invoke function Calc_Amount().
- A function Display() to display the values of all the data members on the screen.

(4)

(d) Answer the questions (i) to (iv) based on the following:

```cpp
class Faculty {
    int FCode;
protected:
    char FName[20];
public:
    Faculty();
    void Enter();
    void Show();
};
class Programme {
    int PID;
protected:
    char Title[30];
public:
    Programme();
    void Commence();
    void View();
};
class Schedule: public Programme, Faculty {
    int DD, MM, YYYY;
public:
```
| | Schedule();
| | void Start();
| | void View();
| | };
| | void main()
| | {
| | Schedule S; //Statement 1
| | ______________
| | //Statement 2
| | }

(i) Write the names of all the member functions, which are directly accessible by the object S of class Schedule as declared in main() function.

(ii) Write the names of all the members, which are directly accessible by the member function Start() of class Schedule.

(iii) Write Statement 2 to call function View() of class Programme from the object S of class Schedule.

(iv) What will be the order of execution of the constructors, when the object S of class Schedule is declared inside main()?

OR

(d) Consider the following class State:

```cpp
class State  
{  
    protected:  
        int tp;  
    public:  
        State( ) { tp=0; }
        State( ) { tp++; }  
        void inctp() { tp++; }  
        int gettp(); { return tp; }  
};  
```

Write a code in C++ to publically derive another class ‘District’ with the following additional members derived in the public visibility mode.

Data Members :
- Dname : string
- Distance : float
- Population : long int

Member functions :
- DINPUT() : To enter Dname, Distance and population
- DOUTPUT() : To display the data members on the screen.
<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Write a user-defined function <code>AddEnd4(int A[][4], int R, int C)</code> in C++ to find and display the sum of all the values, which are ending with 4 (i.e., unit place is 4). For example if the content of array is:</td>
<td>Write a user-defined function <code>EXTRA_ELEM(int A[], int B[], int N)</code> in C++ to find and display the extra element in Array A. Array A contains all the elements of array B but one more element extra. (Restriction: array elements are not in order) Example</td>
<td>An array <code>S[10][30]</code> is stored in the memory along the column with each of its element occupying 2 bytes. Find out the memory location of <code>S[5][10]</code>, if element <code>S[2][15]</code> is stored at the location 8200.</td>
<td>Write the definition of a member function <code>Ins_Player()</code> for a class <code>CQUEUE</code> in C++, to add a Player in a statically allocated circular queue of <code>PLAYERs</code> considering the following code is already written as a part of the program: struct Player { long Pid; char Pname[20];</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Write a user-defined function in C++ to find the sum of both left and right diagonal elements from a two dimensional array.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Write a user-defined function <code>Reverse(int A[], int n)</code> which accepts an integer array and its size as arguments (parameters) and reverse the array. Example: if the array is 10, 20, 30, 40, 50 then reversed array is 50, 40, 30, 20, 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An array <code>A[30][10]</code> is stored in the memory with each element requiring 4 bytes of storage, if the base address of <code>A</code> is 4500, find out memory locations of <code>A[12][8]</code>, if the content is stored along the row.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OR

OR

OR
```cpp
const int size = 10;
class CQUEUE
{
    Player Ar[size];
    int Front, Rear;
    public:
        CQUEUE()
        {
            Front = -1;
            Rear = -1;
        }
        void Ins_Player(); // To add player in a static circular queue
        void Del_Player(); // To remove player from a static circular queue
        void Show_Player(); // To display static circular queue
};
```

OR

(d) Write a function in C++ to delete a node containing Books information, from a dynamically allocated stack of Books implemented with the help of the following structure:
```cpp
struct Book
{
    int BNo;
    char BName[20];
    Book *Next;
};
```

(e) Convert the following Infix expression to its equivalent Postfix expression, showing the stack contents for each step of conversion.

\[\frac{A}{B} + C \times (D - E) \]

OR

Evaluate the following Postfix expression:

\[4, 10, 5, +, *, 15, 3, /, - \]

4 (a) Write a function RevText() to read a text file “Input.txt” and Print only word starting with ‘I’ in reverse order.

Example: If value in text file is: INDIA IS MY COUNTRY
Output will be: AIDNI SI MY COUNTRY

(a) Write a function in C++ to count the number of lowercase alphabets present in a text file “BOOK..txt”.

4 (a) Write a function in C++ to count the number of lowercase alphabets present in a text file “BOOK..txt”.

(2)
Write a function in C++ to search and display details, whose destination is “Cochin” from binary file “Bus.Dat”. Assuming the binary file is containing the objects of the following class:

```cpp
class BUS
{
    int Bno; // Bus Number
    char From[20]; // Bus Starting Point
    char To[20]; // Bus Destination
    public:
        char * StartFrom ( ) { return From; }
        char * EndTo( ) { return To; }
        void input() { cin>>Bno>>; gets(From); get(To); }
        void show( ) { cout<<Bno<<":"<<From ":"<<To<<endl; }
};
```

OR

Write a function in C++ to add more new objects at the bottom of a binary file "STUDENT.dat", assuming the binary file is containing the objects of the following class:

```cpp
class STU
{
    int Rno;
    char Sname[20];
    public:
        void Enter()
        {
            cin>>Rno;gets(Sname);
        }
        void show()
        {
            count << Rno<<Sname<<endl;
        }
};
```

Find the output of the following C++ code considering that the binary file PRODUCT.DAT exists on the hard disk with a list of data of 500 products.

```cpp
class PRODUCT
{
    int PCode;char PName[20];
    public:
        void Entry();void Disp();
};
void main()
{
    fstream In;
    In.open("PRODUCT.DAT",ios::binary|ios::in);
    PRODUCT P;
    In.seekg(0,ios::end);
    cout<<"Total Count: "<<In.tellg()/sizeof(P)<<endl;
}
```
In.seekg(70*sizeof(P));
In.read((char*)&P, sizeof(P));
In.read((char*)&P, sizeof(P));
cout<<"At Product:"<<In.tellg()/sizeof(P) + 1;
In.close();

OR

(c) Which file stream is required for seekg()?

5

(a) Observe the following table and answer the parts(i) and(ii) accordingly

Table: Product

<table>
<thead>
<tr>
<th>Pno</th>
<th>Name</th>
<th>Qty</th>
<th>PurchaseDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Pen</td>
<td>102</td>
<td>12-12-2011</td>
</tr>
<tr>
<td>102</td>
<td>Pencil</td>
<td>201</td>
<td>21-02-2013</td>
</tr>
<tr>
<td>103</td>
<td>Eraser</td>
<td>90</td>
<td>09-08-2010</td>
</tr>
<tr>
<td>109</td>
<td>Sharpener</td>
<td>90</td>
<td>31-08-2012</td>
</tr>
<tr>
<td>113</td>
<td>Clips</td>
<td>900</td>
<td>12-12-2011</td>
</tr>
</tbody>
</table>

(i) Write the names of most appropriate columns, which can be considered as candidate keys.

(ii) What is the degree and cardinality of the above table?

(b) Write SQL queries for (i) to (iv) and find outputs for SQL queries (v) to (viii), which are based on the tables.

<table>
<thead>
<tr>
<th>TRAINER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TID</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>102</td>
</tr>
<tr>
<td>103</td>
</tr>
<tr>
<td>104</td>
</tr>
<tr>
<td>105</td>
</tr>
<tr>
<td>106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CID</td>
</tr>
<tr>
<td>C201</td>
</tr>
<tr>
<td>C202</td>
</tr>
<tr>
<td>C203</td>
</tr>
<tr>
<td>C204</td>
</tr>
<tr>
<td>C205</td>
</tr>
<tr>
<td>C206</td>
</tr>
</tbody>
</table>
(i) Display the Trainer Name, City & Salary in descending order of their Hiredate.

(ii) To display the TNAME and CITY of Trainer who joined the Institute in the month of December 2001.

(iii) To display TNAME, HIREDATE, CNAME, STARTDATE from tables TRAINER and COURSE of all those courses whose FEES is less than or equal to 10000.

(iv) To display number of Trainers from each city.

(v) ```
SELECT TID, TNAME, FROM TRAINER WHERE CITY NOT IN(‘DELHI’, ‘MUMBAI’);
```

(vi) ```
SELECT DISTINCT TID FROM COURSE;
```

(vii) ```
SELECT TID, COUNT(*), MIN(FEES) FROM COURSE GROUP BY TID HAVING COUNT(*)>1;
```

(viii) ```
SELECT COUNT(*), SUM(FEES) FROM COURSE WHERE STARTDATE< ‘2018-09-15’;
```

(a) State any one Distributive Law of Boolean Algebra and Verify it using truth table.

(b) Draw the Logic Circuit of the following Boolean Expression:

\[
((U + V').(U + W)). (V + W')
\]

(c) Derive a Canonical SOP expression for a Boolean function \(F(X,Y,Z) \) represented by the following truth table:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>F(X,Y,Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(d) Reduce the following Boolean Expression to its simplest form using K-Map:

\[
F(X,Y,Z,W)= \Sigma (0,1,2,3,4,5,8,10,11,14)
\]
<table>
<thead>
<tr>
<th>7</th>
<th>(a)</th>
<th>Arun opened his e-mail and found that his inbox was full of hundreds of unwanted mails. It took him around two hours to delete these unwanted mails and find the relevant ones in his inbox. What may be the cause of his receiving so many unsolicited mails? What can Arun do to prevent this happening in future?</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>Assume that 50 employees are working in an organization. Each employee has been allotted a separate workstation to work. In this way, all computers are connected through the server and all these workstations are distributed over two floors. In each floor, all the computers are connected to a switch. Identify the type of network?</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>Your friend wishes to install a wireless network in his office. Explain him the difference between guided and unguided media.</td>
<td>(1)</td>
<td></td>
</tr>
</tbody>
</table>
| (d) | Write the expanded names for the following abbreviated terms used in Networking and Communications:
(i) CDMA
(ii) HTTP
(iii) XML
(iv) URL | (2) |
| (e) | Multipurpose Public School, Bangluru is Setting up the network between its Different Wings of school campus. There are 4 wings named as SENIOR(S), JUNIOR(J), ADMIN(A) and HOSTEL(H). | (4) |

Multipurpose Public School, Bangalore
Distance between various wings are given below:

<table>
<thead>
<tr>
<th>Wing A to Wing S</th>
<th>100m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing A to Wing J</td>
<td>200m</td>
</tr>
<tr>
<td>Wing A to Wing H</td>
<td>400m</td>
</tr>
<tr>
<td>Wing S to Wing J</td>
<td>300m</td>
</tr>
<tr>
<td>Wing S to Wing H</td>
<td>100m</td>
</tr>
<tr>
<td>Wing J to Wing H</td>
<td>450m</td>
</tr>
</tbody>
</table>

Number of Computers installed at various wings are as follows:

<table>
<thead>
<tr>
<th>Wings</th>
<th>Number of Computers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing A</td>
<td>20</td>
</tr>
<tr>
<td>Wing S</td>
<td>150</td>
</tr>
<tr>
<td>Wing J</td>
<td>50</td>
</tr>
<tr>
<td>Wing H</td>
<td>25</td>
</tr>
</tbody>
</table>

(i) Suggest the best wired medium and draw the cable layout to efficiently connect various wings of Multipurpose Public School, Bangluru.

(ii) Name the most suitable wing where the Servers should be installed. Justify your answer.

(iii) Suggest a device/software and its placement that would provide data security for the entire network of the School.

(iv) Suggest a device and the protocol that shall be needed to provide wireless Internet access to all smartphone/laptop users in the campus of Multipurpose Public School, Bangluru.